EO4SDGs: Spatiotemporal poverty mapping using earth observation data and deep learning in Africa
EO4SDGs:利用地球观测数据和深度学习绘制非洲时空贫困图
基本信息
- 批准号:2890076
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will build spatiotemporal maps of poverty on a sub-national scale to support the implementation of the SDGs and enable evidence-based decision-making by combining EO data with local fine-resolution assessments. This task will involve understanding associations between EO metrics and socioeconomic conditions as well as the relationships between poverty and geospatial proxies in different countries, counties, and wards. Moreover, the high temporal resolution of the EO data will be used to track changes in SDGs metrics and identify spatial locations with unusual changes in patterns in the signal so that new surveys targeting those regions can be commissioned.Deep learning techniques, such as Convolutional Neural Networks (CNNs), are increasingly used for predictive analytics with remote sensing images and tasks such as ground object detection, population, land mapping, etc. This project will investigate deep learning techniques to fill spatial gaps in earth observation-based (EO) products. However, a drawback of using solely deep learning models to derive data-driven policy and geographic targeting across time and space is their lack of interpretability. Indeed, these models are well known to be black boxes, making the results not easily explained, justified or intuitive, therefore reducing their practicability for policy-making purposes. Statistical models, on the other hand, are designed such that the parameters reflect the relationship between different features of the data and therefore are interpretable and transferable. Although this level of interpretability is not possible in a black-box deep learning model, they are remarkably accurate for prediction purposes. To address this dichotomy, this project will develop a novel workflow that accurately reproduces SGD indicators while retaining the interpretability of statistical models. Previous studies established relationships between household poverty from household survey data and geospatial data for the surrounding area, but household data is available only partially for a specific ward. The assumption of homogeneity between wards is not valid in general, making the transferability an issue for wards with large variations in socioecological systems. Geostatistical models based on Gaussian processes will be investigated to address the problem of transferability and ultimately predict poverty even at locations where no data is available by borrowing information from neighboring regions. The approach will incorporate multiple EO satellite data and local fine-resolution assessments via spatiotemporal modeling. It is likely that the study will have a focus in East Africa.
该项目将在国家以下一级建立贫困时空地图,以支持可持续发展目标的实施,并通过将地球观测数据与地方精细分辨率评估相结合,实现循证决策。这项任务将涉及了解EO指标和社会经济条件之间的关联,以及不同国家,县和病房的贫困和地理空间代理之间的关系。此外,EO数据的高时间分辨率将用于跟踪SDG指标的变化,并识别信号模式发生异常变化的空间位置,以便可以委托针对这些地区的新调查。深度学习技术,如卷积神经网络(CNN),越来越多地用于遥感图像和任务的预测分析,如地面物体检测,人口,该项目将研究深度学习技术,以填补基于地球观测(EO)产品的空间空白。然而,仅使用深度学习模型来获得跨时间和空间的数据驱动策略和地理定位的缺点是它们缺乏可解释性。事实上,众所周知,这些模型是黑箱,使得结果不容易解释、证明或直观,从而降低了它们对决策目的的实用性。另一方面,统计模型的设计使得参数反映数据不同特征之间的关系,因此是可解释和可转移的。虽然这种程度的可解释性在黑盒深度学习模型中是不可能的,但它们对于预测目的非常准确。为了解决这一二分法,该项目将开发一种新的工作流程,准确再现SGD指标,同时保留统计模型的可解释性。以前的研究建立了家庭贫困之间的关系,从家庭调查数据和周围地区的地理空间数据,但家庭数据只有部分可用于特定的病房。病房之间的同质性的假设是不成立的,在一般情况下,使病房的社会生态系统有很大的变化的可转移性的问题。将研究基于高斯过程的地质统计模型,以解决可转移性问题,并最终通过从邻近地区借用信息来预测贫困,即使在没有数据的地方也是如此。该方法将通过时空建模结合多个EO卫星数据和当地精细分辨率评估。该研究很可能将重点关注东非。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于分子动力学的沥青/集料界面行为Spatiotemporal模型
- 批准号:51378073
- 批准年份:2013
- 资助金额:72.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335568 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335569 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335570 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
- 批准号:
2337461 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
LTREB: Population persistence in a variable world: spatiotemporal variation in climate and demography across the range of scarlet monkeyflower
LTREB:可变世界中的人口持久性:猩红猴花范围内气候和人口的时空变化
- 批准号:
2311414 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant