Graphical models for linkage disequilibrium in genetic mapping

遗传作图中连锁不平衡的图形模型

基本信息

  • 批准号:
    7296059
  • 负责人:
  • 金额:
    $ 31.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-02 至 2011-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): One of the most pressing problems in identifying and localizing genes influencing diseases is the need to model linkage disequilibrium between single nucleotide polymorphisms in dense genotyping assays. Currently available assays determine genotypes at over 500,000 loci per sample, and this data is being used in multiple study designs. Statistical models and methods are needed to account appropriately for linkage disequilibrium, as well as observational error and population admixture. Naive approaches to the problem that rely on single locus analyses are swamped by the need to correct for multiple and correlated tests. Other approaches, such as those that thin out the loci used to reduce linkage disequilibrium or assume that alleles occur in blocks based on location, while sensible and reasonably efficient, do not exploit all of the potential statistical power and resolution made possible by this kind of data. Graphical models are a class of statistical models that can be applied to joint distributions of multivariate observations. In preliminary work by the principal investigator under a current R21 grant, these have been shown to give both accurate and tractable representations of the patterns of allelic association that occur between proximal genetic loci in a variety of problems. Results have been consistent with other sophisticated modeling methods, such as ancestral recombination graphs. In contrast models in which strong assumptions are made based on physical location of loci, such as low order Markov models, have been shown to be inappropriate for this problem. The purpose of this proposal is to further develop graphical modeling methods for linkage disequilibrium in association studies, identity by descent mapping, and linkage analysis. In particular we focus on model restrictions that will give an order of magnitude improvement in computational efficiency; a new formulation for the linkage analysis problem that should improve the mixing properties of Markov chain Monte Carlo methods; and a novel and general method for approximating complex graphical models with simpler ones. In addition, we pursue an approach to identity by descent mapping that incorporates linkage disequilibrium and is scalable to the whole genome level. For this aim of the project we intend to apply the methods developed to dense genotype assays obtained for distantly related breast cancer cases in extended Utah pedigrees.
描述(由申请人提供):识别和定位影响疾病的基因中最紧迫的问题之一是需要在密集基因分型测定中对单核苷酸多态性之间的连锁不平衡进行建模。目前可用的检测方法可确定每个样本超过 500,000 个基因座的基因型,并且该数据正用于多个研究设计。需要统计模型和方法来适当解释连锁不平衡以及观测误差和群体混合。依赖于单位点分析的简单解决问题的方法被纠正多个相关测试的需要所淹没。其他方法,例如用于减少连锁不平衡的基因座稀疏化或假设等位基因根据位置出现在块中的方法,虽然合理且相当有效,但并未利用此类数据可能实现的所有潜在统计功效和分辨率。图模型是一类统计模型,可应用于多变量观测值的联合分布。在主要研究人员在当前 R21 资助下进行的初步工作中,这些已被证明可以准确且易于处理地表示各种问题中近端遗传位点之间发生的等位基因关联模式。结果与其他复杂的建模方法一致,例如祖先重组图。相比之下,基于基因座物理位置做出强假设的模型(例如低阶马尔可夫模型)已被证明不适用于此问题。该提案的目的是进一步开发关联研究、下降映射同一性和连锁分析中连锁不平衡的图形建模方法。我们特别关注模型限制,这将使计算效率提高一个数量级;联动分析问题的新表述,应改善马尔可夫链蒙特卡罗方法的混合特性;以及一种用简单图形模型逼近复杂图形模型的新颖且通用的方法。此外,我们追求一种通过血统图谱进行身份识别的方法,该方法结合了连锁不平衡,并且可扩展到整个基因组水平。为了该项目的目标,我们打算将开发的方法应用于对犹他州谱系中远亲乳腺癌病例进行的密集基因型测定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALUN THOMAS其他文献

ALUN THOMAS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALUN THOMAS', 18)}}的其他基金

Graphical models for linkage disequilibrium in genetic mapping
遗传作图中连锁不平衡的图形模型
  • 批准号:
    7627382
  • 财政年份:
    2007
  • 资助金额:
    $ 31.4万
  • 项目类别:
Graphical models for linkage disequilibrium in genetic mapping
遗传作图中连锁不平衡的图形模型
  • 批准号:
    7910451
  • 财政年份:
    2007
  • 资助金额:
    $ 31.4万
  • 项目类别:
Graphical models for linkage disequilibrium in genetic mapping
遗传作图中连锁不平衡的图形模型
  • 批准号:
    7459911
  • 财政年份:
    2007
  • 资助金额:
    $ 31.4万
  • 项目类别:
ASSOCIATION BETWEEN PHENOTYPES AND DISEQUALIBRIATE LOCI
表型与不平衡位点之间的关联
  • 批准号:
    6875388
  • 财政年份:
    2005
  • 资助金额:
    $ 31.4万
  • 项目类别:
ASSOCIATION BETWEEN PHENOTYPES AND DISEQUALIBRIATE LOCI
表型与不平衡位点之间的关联
  • 批准号:
    7017782
  • 财政年份:
    2005
  • 资助金额:
    $ 31.4万
  • 项目类别:

相似海外基金

Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
  • 批准号:
    10818088
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
  • 批准号:
    10571022
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
  • 批准号:
    10590405
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
  • 批准号:
    2305910
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
  • 批准号:
    10608931
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
  • 批准号:
    10656719
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
The role of admixture in human evolution
混合物在人类进化中的作用
  • 批准号:
    10683318
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
  • 批准号:
    2116322
  • 财政年份:
    2021
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
  • 批准号:
    10307040
  • 财政年份:
    2021
  • 资助金额:
    $ 31.4万
  • 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
  • 批准号:
    10307680
  • 财政年份:
    2021
  • 资助金额:
    $ 31.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了