How underground lithologies respond to thermo-mechanical coupling during energy extraction/storage.

地下岩性在能量提取/存储过程中如何响应热机械耦合。

基本信息

  • 批准号:
    2893447
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

On our quest to decarbonise our energy resources, underground heat energy storage is a key player. However, the impact of frequent cyclic thermo-mechanical (TM) stress changes over prolonged periods remains poorly understood and may threatened the longevity of the systems. This project aims to fill this gap by performing laboratory and numerical experiments under relevant cyclic TM loading conditions to investigate the stability of targeted lithologies in such systems. To address the energy transition challenges, new subsurface solutions focus either on new resources exploitation (geothermal) or storage (radioactive waste, heat and/or gas -underground gas storage, compressed-air energy storage, H, CO2). All these applications have in common to induce new, shallow, periodic, local thermo-mechanical stress changes. The scope of this PhD project is to use different-scale observations to model and predict the stability of targeted lithologies in underground complex systems when those are subjected to cyclic TM stress changes over prolonged periods. This research work seeks to understand how grain-scale deformation can contribute to the global response of the underground systems and how this response can be controlled to reduce any accompanied induced hazards. An innovative methodology, combining laboratory and numerical experiments, will be applied to extend the understanding of the thermo-sensitive brittle deformation processes in porous rocks. The data will provide information to support field-scale operational conditions involving periodic TM stress changes as well as shed light on potential cascading shallow geohazards.Objectives:O1: Examine the relationship between microstructural deformation and TM stresses.O2: Collect, analyse and model TM data together.O3: Transfer and improve existing DEM code from UDEC to open source and undertake grain size sensitivity analysis.O4: Provide relevant data to inform on risks associated to TM stresses in underground geological storage conditions.Laboratory experiments will be performed at different scales (from grain to sample scales). Core samples will be x-ray scanned at HWU to understand their internal 3D microstructure and assess their transport properties (porosity and permeability) at pre- and post-TM experiments (O1). TM experiments will be performed at BGS to simulate elevated environmental conditions. Several deformation scenarios will be investigated to cover different industrial field operations. This lab-scale global sensing data will be combined to petrographical analysis (O2) to correlate the spatiotemporal distribution of the lab-induced damage within the tested materials with the microstructural evolution. Moreover, similar grain-scale experiments with syn-deformation monitoring (x-rays) are possibly planned to unravel the micro-scale processes. Numerical modelling and machine learning techniques are nowadays used more frequently to predict the subsurfacesystem behavior. TM coupling calibrated Voronoi Grain Based Modelling (GBM) can capture micro-cracking as a mechanism of progressive damage, reproducing the stress-strain behavior of laboratory tests. Developing such models will help to understand how TM brittle damage develops across the scales, from grain-size cracking to rock mass fracturing, and its time dependency. This PhD project will build on the DEM developed by Woodman et al. (2021) to undertake notably a grain size and distribution sensitivity analyses in thermo-mechanical simulations (O3) to further assess the up scaling of laboratory data to field scale (O4).
在我们寻求能源脱碳的过程中,地下热能储存是一个关键因素。然而,长期频繁的循环热机械(TM)应力变化的影响仍然知之甚少,并可能威胁系统的寿命。本项目旨在填补这一空白,通过在相关的循环TM加载条件下进行实验室和数值实验,以调查此类系统中目标岩性的稳定性。为了应对能源转型的挑战,新的地下解决方案将重点放在新的资源开发(地热)或存储(放射性废物,热和/或气体-地下气体存储,压缩空气储能,H,CO2)上。所有这些应用的共同点是诱导新的、浅的、周期性的局部热机械应力变化。这个博士项目的范围是使用不同尺度的观测来模拟和预测地下复杂系统中目标岩性的稳定性,当这些系统长时间受到周期性TM应力变化时。这项研究工作旨在了解颗粒尺度变形如何有助于地下系统的全球响应,以及如何控制这种响应以减少任何伴随的诱发灾害。一种创新的方法,结合实验室和数值实验,将被应用到扩展多孔岩石中的热敏脆性变形过程的理解。这些数据将提供信息以支持涉及周期性TM应力变化的现场规模操作条件,并揭示潜在的级联浅层地质灾害。目标:O 1:检查微结构变形和TM应力之间的关系。O2:收集、分析TM数据并一起建模。O3:将现有DEM代码从UDEC转移并改进为开源代码,并进行粒度敏感性分析。提供相关数据,以告知地下地质储存条件下与TM应力相关的风险。将在不同规模(从颗粒到样品规模)进行实验室实验。将在HWU对岩心样品进行X射线扫描,以了解其内部3D微观结构,并在TM实验前后(O 1)评估其输运特性(孔隙度和渗透率)。TM实验将在BGS进行,以模拟升高的环境条件。将研究几种变形方案,以涵盖不同的工业现场操作。该实验室规模的全球传感数据将结合岩相分析(O2),以将实验室引起的损伤在受试材料中的时空分布与微观结构演变相关联。此外,类似的晶粒尺度实验与同步变形监测(X射线)可能计划解开微观尺度的过程。数值模拟和机器学习技术现在更频繁地用于预测地下水的行为。TM耦合校准的Voronoi晶粒基模型(GBM)可以捕获微裂纹作为渐进损伤的机制,再现实验室试验的应力-应变行为。开发这样的模型将有助于了解TM脆性损伤如何跨尺度发展,从粒度开裂到岩体破裂,以及它的时间依赖性。该博士项目将建立在Woodman等人(2021)开发的DEM基础上,特别是在热机械模拟(O3)中进行粒度和分布敏感性分析,以进一步评估实验室数据到现场规模(O 4)的放大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Preparation for the Deep Underground Neutrino Experiment and Measurement of Pion-Argon Cross-sections
深部地下中微子实验准备及π-氩截面测量
  • 批准号:
    2902765
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS-Climate: Bubble generation and ripening in underground hydrogen storage
CAS-气候:地下储氢中气泡的产生和成熟
  • 批准号:
    2348723
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geothermal heat recovery and energy storage from underground mines
地下矿山的地热热回收和能源储存
  • 批准号:
    DE240100204
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Piloting Underground Storage of Heat In geoThermal reservoirs (PUSH IT)
试点地热库地下储热 (PUSH IT)
  • 批准号:
    10047610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Integrated facility for underground hydrogen storage research
地下储氢研究综合设施
  • 批准号:
    LE230100129
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Towards a carbon-free future: Using underground storage of hydrogen in porous rocks to enable grid-scale energy storage
迈向无碳未来:利用地下多孔岩石中的氢储存来实现电网规模的能源储存
  • 批准号:
    2894612
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了