How underground lithologies respond to thermo-mechanical coupling during energy extraction/storage.

地下岩性在能量提取/存储过程中如何响应热机械耦合。

基本信息

  • 批准号:
    2893447
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

On our quest to decarbonise our energy resources, underground heat energy storage is a key player. However, the impact of frequent cyclic thermo-mechanical (TM) stress changes over prolonged periods remains poorly understood and may threatened the longevity of the systems. This project aims to fill this gap by performing laboratory and numerical experiments under relevant cyclic TM loading conditions to investigate the stability of targeted lithologies in such systems. To address the energy transition challenges, new subsurface solutions focus either on new resources exploitation (geothermal) or storage (radioactive waste, heat and/or gas -underground gas storage, compressed-air energy storage, H, CO2). All these applications have in common to induce new, shallow, periodic, local thermo-mechanical stress changes. The scope of this PhD project is to use different-scale observations to model and predict the stability of targeted lithologies in underground complex systems when those are subjected to cyclic TM stress changes over prolonged periods. This research work seeks to understand how grain-scale deformation can contribute to the global response of the underground systems and how this response can be controlled to reduce any accompanied induced hazards. An innovative methodology, combining laboratory and numerical experiments, will be applied to extend the understanding of the thermo-sensitive brittle deformation processes in porous rocks. The data will provide information to support field-scale operational conditions involving periodic TM stress changes as well as shed light on potential cascading shallow geohazards.Objectives:O1: Examine the relationship between microstructural deformation and TM stresses.O2: Collect, analyse and model TM data together.O3: Transfer and improve existing DEM code from UDEC to open source and undertake grain size sensitivity analysis.O4: Provide relevant data to inform on risks associated to TM stresses in underground geological storage conditions.Laboratory experiments will be performed at different scales (from grain to sample scales). Core samples will be x-ray scanned at HWU to understand their internal 3D microstructure and assess their transport properties (porosity and permeability) at pre- and post-TM experiments (O1). TM experiments will be performed at BGS to simulate elevated environmental conditions. Several deformation scenarios will be investigated to cover different industrial field operations. This lab-scale global sensing data will be combined to petrographical analysis (O2) to correlate the spatiotemporal distribution of the lab-induced damage within the tested materials with the microstructural evolution. Moreover, similar grain-scale experiments with syn-deformation monitoring (x-rays) are possibly planned to unravel the micro-scale processes. Numerical modelling and machine learning techniques are nowadays used more frequently to predict the subsurfacesystem behavior. TM coupling calibrated Voronoi Grain Based Modelling (GBM) can capture micro-cracking as a mechanism of progressive damage, reproducing the stress-strain behavior of laboratory tests. Developing such models will help to understand how TM brittle damage develops across the scales, from grain-size cracking to rock mass fracturing, and its time dependency. This PhD project will build on the DEM developed by Woodman et al. (2021) to undertake notably a grain size and distribution sensitivity analyses in thermo-mechanical simulations (O3) to further assess the up scaling of laboratory data to field scale (O4).
在我们寻求能源脱碳的过程中,地下热能储存是一个关键因素。然而,长时间频繁的循环热机械(TM)应力变化的影响仍然知之甚少,并可能威胁到系统的寿命。本项目旨在填补这一空白,通过在相关循环TM加载条件下进行实验室和数值实验,研究这些系统中目标岩性的稳定性。为了应对能源转型的挑战,新的地下解决方案要么专注于新资源的开采(地热),要么专注于新资源的储存(放射性废物、热量和/或天然气——地下储气库、压缩空气储能、H、CO2)。所有这些应用都有一个共同之处,即诱发新的、浅的、周期性的局部热机械应力变化。该博士项目的范围是使用不同尺度的观测来模拟和预测地下复杂系统中目标岩性在长时间周期性TM应力变化时的稳定性。这项研究工作旨在了解颗粒尺度的变形如何对地下系统的全球响应做出贡献,以及如何控制这种响应以减少任何伴随的诱发危害。一种创新的方法,结合实验室和数值实验,将应用于扩展对多孔岩石热敏脆性变形过程的理解。这些数据将提供信息,支持涉及周期性TM应力变化的现场规模操作条件,并阐明潜在的级联浅层地质灾害。目的:1:研究显微组织变形与TM应力之间的关系。O2:收集、分析和建模TM数据。O3:将现有DEM代码从UDEC转开源并改进,进行粒度敏感性分析。O4:提供相关数据,以告知地下地质储存条件下与TM应力相关的风险。实验室实验将在不同的尺度(从颗粒尺度到样品尺度)进行。岩心样品将在HWU进行x射线扫描,以了解其内部3D微观结构,并在tm前后实验中评估其输运特性(孔隙度和渗透率)(O1)。TM实验将在英国地质调查局进行,以模拟升高的环境条件。将研究几种变形情况,以涵盖不同的工业现场操作。这些实验室规模的全球传感数据将与岩石学分析(O2)相结合,以将实验室诱导的损伤在测试材料中的时空分布与微观结构演变联系起来。此外,可能计划用同步变形监测(x射线)进行类似的晶粒尺度实验,以揭示微尺度过程。数值模拟和机器学习技术现在更频繁地用于预测地下系统的行为。TM耦合校准的Voronoi基于颗粒的建模(GBM)可以捕捉微裂纹作为渐进损伤的机制,再现实验室测试的应力-应变行为。开发这样的模型将有助于理解TM脆性损伤是如何跨越尺度发展的,从粒度开裂到岩体破裂,以及它的时间依赖性。该博士项目将以Woodman等人(2021)开发的DEM为基础,主要进行热机械模拟(O3)中的晶粒尺寸和分布敏感性分析,以进一步评估实验室数据到现场规模的放大(O4)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Preparation for the Deep Underground Neutrino Experiment and Measurement of Pion-Argon Cross-sections
深部地下中微子实验准备及π-氩截面测量
  • 批准号:
    2902765
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAS-Climate: Bubble generation and ripening in underground hydrogen storage
CAS-气候:地下储氢中气泡的产生和成熟
  • 批准号:
    2348723
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geothermal heat recovery and energy storage from underground mines
地下矿山的地热热回收和能源储存
  • 批准号:
    DE240100204
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Piloting Underground Storage of Heat In geoThermal reservoirs (PUSH IT)
试点地热库地下储热 (PUSH IT)
  • 批准号:
    10047610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Quantum Sensing on the London Underground
伦敦地铁的量子传感
  • 批准号:
    EP/Y005287/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Towards a carbon-free future: Using underground storage of hydrogen in porous rocks to enable grid-scale energy storage
迈向无碳未来:利用地下多孔岩石中的氢储存来实现电网规模的能源储存
  • 批准号:
    2894612
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了