Scaling Biosense: Advanced Informatics Solution for Critical Problems
Scaling Biosense:针对关键问题的高级信息学解决方案
基本信息
- 批准号:7428899
- 负责人:
- 金额:$ 46.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-30 至 2009-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biosense is rapidly incorporating new data sources and data types. As Biosense grows, sensitivity and
specificity of detection will depend on how the data integration problems are addressed, including data
delays, sparse data from some regions, and heterogeneous input signals. Without automated approaches to
these fundamental problems, it will be difficult for Biosense to scale. We will develop a systematic pipeline of
PHIN-compliant methods that will automate the process of evaluating and integrating new signals into
Biosense in a manner that maximizes sensitivity and specificity. The three main stages of the pipeline are:
1) Assessing and adjusting for data availability - Biosense data acquisition is continually subjected to
crippling systemic delaysthat drastically reduce the timeliness and radically undermine the sensitivity of the
system. We will increase sensitivity and specificity of detection by evaluating data completeness and
compensating for missing data using model-based extrapolation. We will also use a multivariate approach to
help distinguish between changes in data availability and changes in actual event counts.
2) Determining optimal aggregation approaches - The approach to data aggregation directly affects
sensitivity and specifcity of detection.We will increase sensitivity and specificity of detection by systematically
determining the best level of aggregation at which to model the data. We will also use unsupervised
clustering approaches to group data in the manner that maximizes sensitivity and specificity.
3) Integrating multiple signals - As Biosense grows to include additional data sources and analytic methods,
the number of signals that need to be tracked will quickly grow to a level that overwhelms the Biosense
Biointelligence Monitors.We will increase sensitivity and specificity by optimally integrating multiple signals
using a nonparametric multivariate modeling approach. We will also develop empirically optimized
multivariate threshold functions to integrate multiple univariate test statistics.
The PHIN-compliant methods developed will be released into open source for the benefit of the public health
community. These tools can be used by Biosense profesisonals to evaluate new and existing data sources,
assess and adjust for data delays, and optimallydata aggregate the data and integrate it into the existing
Bisoense system.
Biosense 正在快速整合新的数据源和数据类型。随着 Biosense 的发展,灵敏度和
检测的特异性将取决于如何解决数据集成问题,包括数据
延迟、某些区域的稀疏数据以及异构输入信号。如果没有自动化的方法
这些根本性问题,让 Biosense 难以扩大规模。我们将开发系统化的管道
符合 PHIN 标准的方法将自动评估新信号并将其集成到
以最大限度提高灵敏度和特异性的方式进行生物传感。管道的三个主要阶段是:
1) 评估和调整数据可用性 - Biosense 数据采集不断受到
严重的系统性延误,大大降低了及时性并从根本上破坏了
系统。我们将通过评估数据完整性和
使用基于模型的外推法补偿丢失的数据。我们还将使用多元方法
帮助区分数据可用性的变化和实际事件计数的变化。
2) 确定最佳聚合方法 - 数据聚合方法直接影响
检测的灵敏度和特异性。我们将通过系统地提高检测的灵敏度和特异性
确定对数据建模的最佳聚合级别。我们还将使用无监督的
以最大化敏感性和特异性的方式对数据进行聚类的方法。
3) 整合多个信号 - 随着 Biosense 不断发展以包含更多数据源和分析方法,
需要跟踪的信号数量将迅速增长到超出 Biosense 的水平
生物智能监测仪。我们将通过优化整合多个信号来提高灵敏度和特异性
使用非参数多元建模方法。我们还将开发经验优化的
多变量阈值函数集成多个单变量测试统计数据。
开发的符合 PHIN 标准的方法将开源,以造福公众健康
社区。 Biosense 专业人员可以使用这些工具来评估新的和现有的数据源,
评估和调整数据延迟,并以最佳方式聚合数据并将其集成到现有的数据中
Bisoense 系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ben Y Reis其他文献
Harnessing the Power of Generative AI for Clinical Summaries: Perspectives From Emergency Physicians.
利用生成式人工智能的力量进行临床总结:急诊医生的观点。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.2
- 作者:
Y. Barak;Rebecca Wolf;R. Rozenblum;Jessica K. Creedon;Susan C. Lipsett;Todd W. Lyons;Kenneth A. Michelson;Kelsey A. Miller;Daniel Shapiro;Ben Y Reis;Andrew M Fine - 通讯作者:
Andrew M Fine
Ben Y Reis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ben Y Reis', 18)}}的其他基金
Development and validation of an electronic health record prediction tool for first-episode psychosis
首发精神病电子健康记录预测工具的开发和验证
- 批准号:
10057390 - 财政年份:2019
- 资助金额:
$ 46.41万 - 项目类别:
Development and validation of an electronic health record prediction tool for first-episode psychosis
首发精神病电子健康记录预测工具的开发和验证
- 批准号:
10305682 - 财政年份:2019
- 资助金额:
$ 46.41万 - 项目类别:
Improved multifactorial prediction of suicidal behavior through integration of multiple datasets
通过整合多个数据集改进自杀行为的多因素预测
- 批准号:
9762979 - 财政年份:2018
- 资助金额:
$ 46.41万 - 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
- 批准号:
8232024 - 财政年份:2010
- 资助金额:
$ 46.41万 - 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
- 批准号:
8055383 - 财政年份:2010
- 资助金额:
$ 46.41万 - 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
- 批准号:
7764278 - 财政年份:2010
- 资助金额:
$ 46.41万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
8065527 - 财政年份:2009
- 资助金额:
$ 46.41万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
8053207 - 财政年份:2009
- 资助金额:
$ 46.41万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
8249941 - 财政年份:2009
- 资助金额:
$ 46.41万 - 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
- 批准号:
7652734 - 财政年份:2009
- 资助金额:
$ 46.41万 - 项目类别:
相似海外基金
BioSense: Accelerating Biological Research through Innovative Real-time, Multiparametric Cell Culture Monitoring Solutions
BioSense:通过创新的实时多参数细胞培养监测解决方案加速生物研究
- 批准号:
10075445 - 财政年份:2023
- 资助金额:
$ 46.41万 - 项目类别:
Grant for R&D
SBIR Phase I: BioSense AMD - A Point-of-Care Device for Monitoring Airway Inflammation
SBIR 第一阶段:BioSense AMD - 用于监测气道炎症的护理点设备
- 批准号:
2015081 - 财政年份:2020
- 资助金额:
$ 46.41万 - 项目类别:
Standard Grant