Improved multifactorial prediction of suicidal behavior through integration of multiple datasets

通过整合多个数据集改进自杀行为的多因素预测

基本信息

  • 批准号:
    9762979
  • 负责人:
  • 金额:
    $ 51.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-13 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Suicide is the tenth leading cause of death in the United States, accounting for more than 40,000 deaths annually. Despite ongoing efforts to reduce the burden of suicide and suicidal behavior, rates have remained relatively constant over the past half century. Attempts to predict suicidal behavior have relied almost exclusively on self-reporting of suicidal thoughts and intentions. This is problematic because of well-known reporting biases and the fact that many people at high risk are motivated to deny suicidal thoughts to avoid hospitalization. Even though the majority of all suicide decedents have contact with a healthcare professional in the month before their death, suicide risk is rarely detected in such cases. Efforts to identify risk factors have also been stymied by the fact that suicide is a low-base rate event so that very large samples are needed to test the complex combinations of factors that are likely to contribute to risk. The widespread adoption of longitudinal electronic health records (EHRs) has created a powerful but still under-utilized resource for detecting and predicting important health outcomes. In prior work using machine learning methods to analyze structured EHR data, we have developed predictive models that detect up to 45% of first-episode suicidal behavior, on average 3 years in advance. Here we aim to systematically extend and improve our EHR prediction methods in a large healthcare system (N = 4.6 million patients) by incorporating 1) external public record datasets (LexisNexis SocioEconomic Health Attribute data) that include environmental, socioeconomic, and life event information; 2) natural language processing (NLP) to leverage unstructured EHR text, including text-based scores that capture RDoC domains; 3) a novel method of deriving temporal risk envelopes to capture the time-dependent effects of individual risk factors; and 4) clinical risk trajectories that incorporate ordered temporal sequences of risk factors. We will systematically compare the performance of each of these approaches to identify optimal strategies for enhancing risk surveillance and prediction in healthcare settings. Completion of these aims would represent a crucial step towards novel, clinically deployable, and potentially transformative tools for improving outcomes for those at risk for suicide and suicidal behavior.
自杀是美国第十大死亡原因,死亡人数超过4万人 每年。尽管一直在努力减少自杀和自杀行为的负担, 在过去的半个世纪中相对稳定。预测自杀行为的尝试几乎依赖于 专门针对自杀想法和意图的自我报告。这是有问题的,因为众所周知的 报告偏见和事实,许多人在高风险的动机否认自杀的想法,以避免 住院尽管大多数自杀者都与医疗专业人员有过接触 在他们死亡前的一个月内,很少发现这种情况下有自杀的危险。确定风险因素的努力 自杀是一个低基数事件,因此需要非常大的样本来 测试可能导致风险的复杂因素组合。的广泛采用 纵向电子健康记录(EHR)为以下方面创造了一个强大但尚未充分利用的资源: 检测和预测重要的健康结果。在先前的工作中,使用机器学习方法来分析 结构化的EHR数据,我们已经开发出预测模型,检测高达45%的首次发作自杀 行为,平均提前3年。在这里,我们的目标是系统地扩展和改进我们的EHR 大型医疗保健系统(N = 460万患者)中的预测方法,包括1)外部公众 记录数据集(LNEXIS社会经济健康属性数据),包括环境,社会经济, 和生活事件信息; 2)自然语言处理(NLP),以利用非结构化EHR文本,包括 基于文本的分数,捕获RDoC域; 3)一种新的方法,推导时间风险信封, 捕获个体风险因素的时间依赖性影响;以及4)临床风险轨迹, 风险因素的有序时间序列。我们将系统地比较每一个的性能, 确定最佳策略的方法,以加强医疗保健环境中的风险监测和预测。 这些目标的完成将是迈向新的,临床可部署的, 为那些有自杀和自杀行为风险的人改善结果的变革工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ben Y Reis其他文献

Harnessing the Power of Generative AI for Clinical Summaries: Perspectives From Emergency Physicians.
利用生成式人工智能的力量进行临床总结:急诊医生的观点。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Y. Barak;Rebecca Wolf;R. Rozenblum;Jessica K. Creedon;Susan C. Lipsett;Todd W. Lyons;Kenneth A. Michelson;Kelsey A. Miller;Daniel Shapiro;Ben Y Reis;Andrew M Fine
  • 通讯作者:
    Andrew M Fine

Ben Y Reis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ben Y Reis', 18)}}的其他基金

Development and validation of an electronic health record prediction tool for first-episode psychosis
首发精神病电子健康记录预测工具的开发和验证
  • 批准号:
    10057390
  • 财政年份:
    2019
  • 资助金额:
    $ 51.4万
  • 项目类别:
Development and validation of an electronic health record prediction tool for first-episode psychosis
首发精神病电子健康记录预测工具的开发和验证
  • 批准号:
    10305682
  • 财政年份:
    2019
  • 资助金额:
    $ 51.4万
  • 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
  • 批准号:
    8232024
  • 财政年份:
    2010
  • 资助金额:
    $ 51.4万
  • 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
  • 批准号:
    8055383
  • 财政年份:
    2010
  • 资助金额:
    $ 51.4万
  • 项目类别:
Integrative Methods for Improved Pharmacovigilance
改善药物警戒的综合方法
  • 批准号:
    7764278
  • 财政年份:
    2010
  • 资助金额:
    $ 51.4万
  • 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
  • 批准号:
    8065527
  • 财政年份:
    2009
  • 资助金额:
    $ 51.4万
  • 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
  • 批准号:
    8249941
  • 财政年份:
    2009
  • 资助金额:
    $ 51.4万
  • 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
  • 批准号:
    8053207
  • 财政年份:
    2009
  • 资助金额:
    $ 51.4万
  • 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
  • 批准号:
    7652734
  • 财政年份:
    2009
  • 资助金额:
    $ 51.4万
  • 项目类别:
Intelligent Histories: Detecting Personalized Risk with Longitudinal Surveillance
智能历史:通过纵向监控检测个性化风险
  • 批准号:
    7784567
  • 财政年份:
    2009
  • 资助金额:
    $ 51.4万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 51.4万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 51.4万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 51.4万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 51.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了