Bayesian inference in complex risk assessment with application to health hazards from abiotic toxin exposure

复杂风险评估中的贝叶斯推理及其应用于非生物毒素暴露造成的健康危害

基本信息

  • 批准号:
    2902031
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Risk assessment is an iterative process that seeks to quantify the hazards associated with a range of exposure conditions on human health across five general steps: problem formulation, hazard identification, dose-response assessment, exposure assessment, and risk characterization. Animal toxicology and human observational studies are used to characterize toxin risk, but these methods fail to adequately produce a function that can confidently describe real-world conditions and outcomes. Among the concerns are 1) extrapolation from animals to humans; 2) the shape of the relationship between high-dose and low-dose response; 3) the difference in response between average, resilient, and susceptible individuals; and 4) the impact of interactions among toxins on the dose-response relationship. Statistical models can support researchers in interpreting data by formalizing hypotheses about complex and nonlinear relationships, as well as the interactions between components within a model. The integration of mathematical modelling, and quantitative, real-world and experimental data is essential to investigating biological and ecological hypotheses; however, a general scarcity of a systematic method for evaluating the impact, among humans, from abiotic toxin exposures remains, limiting researchers' capacity to estimate individual health risk associated with environmental toxins that are informed by real-world data. We aim to study Bayesian methods for the development of a methodology for examining the dose-response relationship between abiotic toxins and health outcomes, considering complex exposure data, interactions, and outcomes. This seeks to build on the developments in the study of Bayesian inference and MCMC simulations to further characterize the dose-response relationship and the associated uncertainty in modelling such a complex relationship with large amounts of inputs for each individual of study. The limitations in the current method of deriving a dose-response relationship undermine the applicability of human health risk modelling from environmental hazards. The complexity of inputs and the high dimensionality of factors influencing susceptibility produce a problem beyond the scope of solving a mechanistically-informed function. The interactions among even the most common pollutants would contain a combinatorial problem that would take decades to solve with conventional methods of testing, and given the thousands of abiotic and biotic exposures a person interacts with every day, alongside an individual's susceptibility profile, the enormity of this challenge is so great that it is unlikely that current methods will be able to adequately characterize true risk. Furthermore, the issue of parameterizing a model becomes more important and more challenging as the complexity of biological systems increase. Given the range of inputs that influence individual susceptibility and the complex interplay between exposure and response between individuals, modelling frameworks must be able to account for a detailed understanding of the ecological and biological processes that contribute to health outcomes. Development in the space of parameterizing such complex models requires further study to produce methodologies and techniques that can account for diverse sources of data and outcomes.
风险评估是一个迭代过程,旨在通过五个一般步骤量化与一系列暴露条件有关的危害:问题制定、危害识别、剂量反应评估、暴露评估和风险定性。动物毒理学和人类观察性研究被用来描述毒素风险,但这些方法无法充分产生一个功能,可以自信地描述现实世界的条件和结果。这些问题包括:(1)从动物外推到人类;(2)高剂量和低剂量反应之间关系的形态;(3)普通、有弹性和易受影响的个体之间反应的差异;(4)毒素之间相互作用对剂量-反应关系的影响。统计模型可以通过形式化有关复杂和非线性关系的假设以及模型内组件之间的相互作用来支持研究人员解释数据。数学建模以及定量、真实世界和实验数据的整合对于调查生物和生态假设至关重要;然而,仍然普遍缺乏系统的方法来评估人类接触非生物毒素的影响,限制了研究人员根据真实世界数据估计与环境毒素相关的个人健康风险的能力。我们的目标是研究贝叶斯方法的方法学研究非生物毒素和健康结果之间的剂量反应关系,考虑到复杂的暴露数据,相互作用和结果的发展。这旨在建立在贝叶斯推理和MCMC模拟研究的发展基础上,进一步表征剂量-反应关系和相关的不确定性,为每个研究个体建立具有大量输入的复杂关系模型。目前推导剂量-反应关系的方法的局限性破坏了环境危害人类健康风险模型的适用性。输入的复杂性和影响易感性的因素的高维性产生的问题超出了解决机械通知功能的范围。即使是最常见的污染物之间的相互作用也会包含一个组合问题,用传统的测试方法需要几十年才能解决,并且考虑到一个人每天与成千上万的非生物和生物接触,以及个人的易感性,这一挑战的艰巨性是如此之大,以至于目前的方法不太可能能够充分描述真正的风险。此外,随着生物系统复杂性的增加,模型参数化的问题变得更加重要和更具挑战性。鉴于影响个人易感性的各种投入以及个人之间接触和反应之间的复杂相互作用,建模框架必须能够详细了解有助于健康结果的生态和生物过程。要在参数化这类复杂模型方面取得进展,就需要进一步研究,以制定能够说明各种数据来源和结果的方法和技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
  • 批准号:
    10620291
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
  • 批准号:
    10445648
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Bayesian inference in complex stochastic models
复杂随机模型中的贝叶斯推理
  • 批准号:
    580712-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Sequential Bayesian inference in complex and realistic dynamical systems
复杂且现实的动力系统中的顺序贝叶斯推理
  • 批准号:
    2615884
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Bayesian Inference for Complex Systems
复杂系统的贝叶斯推理
  • 批准号:
    2629056
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Flexible Bayesian approaches to causal inference with multilevel survival data and multiple treatments
利用多级生存数据和多种治疗进行因果推理的灵活贝叶斯方法
  • 批准号:
    10056850
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Improving clinical decision making through Bayesian causal inference with irregularly observed longitudinal data
通过不规则观察的纵向数据进行贝叶斯因果推理来改善临床决策
  • 批准号:
    365453
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Bayesian inference and prediction in complex social systems
复杂社会系统中的贝叶斯推理和预测
  • 批准号:
    1831971
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了