Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"

用于高维疾病绘图和边界检测的贝叶斯建模和推理”

基本信息

  • 批准号:
    10568797
  • 负责人:
  • 金额:
    $ 29.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract This application seeks to advance statistical methods within the Bayesian inferential paradigm for disease map- ping and spatial boundary analysis. Disease mapping is an epidemiological technique used to describe the geographic variation of disease and to generate etiological hypotheses about the possible causes for apparent differences in risk. The last decade has seen an explosion of interest in disease mapping, with recent method- ological developments in advanced spatial statistics and increasing availability of computerized Geographic In- formation Systems (GIS) technology. Spatial biostatisticians, data scientists and epidemiologists today routinely encounter datasets requiring multi- or high-dimensional disease mapping in the presence of spatial-temporal misalignment, where “dimension” refers to (a) the number of cancer types being studied, (b) the number of spa- tial units (e.g., census-tracts, counties) in the map, and (c) the number of temporal units (time points) at which the data are observed. This application offers novel classes of stochastic process-based graphical models with specific attention to spatially-temporally misaligned data and modeling of multiple cancers. The versatility and scalability of the proposed framework will allow epidemiologists and public health researchers to account for information from multiple sources including, but not limited to, environmental factors and climate-related vari- ables at arbitrary resolutions in spatial-temporal “BIG DATA” settings. The proposal will subsequently develop a rigorous framework for multivariate boundary detection on maps, where boundaries delineate regions with significantly different spatial effects.
项目总结/摘要 本申请旨在推进疾病地图贝叶斯推理范式内的统计方法- 空间边界分析。疾病分布图是一种流行病学技术,用于描述 疾病的地理变异,并产生关于明显的疾病的可能原因的病因学假设, 风险的差异。在过去的十年里,人们对疾病地图的兴趣激增,最近的方法- 先进的空间统计学的发展和计算机化地理信息系统的日益普及, 地理信息系统(GIS)技术。如今,空间生物统计学家、数据科学家和流行病学家 遇到需要在存在时空的情况下进行多维或高维疾病映射的数据集 失准,其中“维度”是指(a)正在研究的癌症类型的数量,(B)在研究的癌症类型中, 初始单位(例如,(c)在地图中的时间单位(时间点)的数量, 观察数据。该应用程序提供了一类新的基于随机过程的图形模型, 特别关注时空错位数据和多种癌症的建模。的多功能性和 拟议框架的可扩展性将使流行病学家和公共卫生研究人员能够解释 来自多个来源的信息,包括但不限于环境因素和气候相关瓦里, 可以在时空“大数据”设置中以任意分辨率显示。该提案将随后制定 地图上多元边界检测的严格框架,其中边界描绘区域, 不同的空间效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sudipto Banerjee其他文献

Sudipto Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sudipto Banerjee', 18)}}的其他基金

Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
  • 批准号:
    10295781
  • 财政年份:
    2018
  • 资助金额:
    $ 29.37万
  • 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
  • 批准号:
    10060746
  • 财政年份:
    2018
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierarchical Modeling and Analysis for Large Spatially and Temporally Misaligned Data in Environmental Health Applications
环境健康应用中大型时空错位数据的分层建模和分析
  • 批准号:
    10094059
  • 财政年份:
    2017
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
  • 批准号:
    9074848
  • 财政年份:
    2014
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
  • 批准号:
    8733183
  • 财政年份:
    2013
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
  • 批准号:
    7815451
  • 财政年份:
    2009
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
  • 批准号:
    7943904
  • 财政年份:
    2009
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
  • 批准号:
    7097022
  • 财政年份:
    2006
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
  • 批准号:
    7216891
  • 财政年份:
    2006
  • 资助金额:
    $ 29.37万
  • 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
  • 批准号:
    7362423
  • 财政年份:
    2006
  • 资助金额:
    $ 29.37万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 29.37万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 29.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了