Efficient Scatter Correction

高效的散射校正

基本信息

  • 批准号:
    7361553
  • 负责人:
  • 金额:
    $ 23.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-21 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The last 10 years have seen significant changes in the way CT images are acquired. Commercial CT scanners have advanced from 2 to 64 slices, and the development of flat-panel thin-film transistor and other larger-area digital x-ray detectors have given rise to volumetric imaging systems with z-axis extents of 20 cm or greater. As the volume of tissue irradiated at the same time increases, so does the signal from scattered radiation that reaches the detector. The scatter signal in recorded projection images leads to a reduction in image contrast, to an increase in cupping and attenuation coefficient inaccuracy and to streak artifacts in the reconstructed CT images. Scatter-to-primary ratios (SPRs) of even a few percent produce significant streaks due to the non-linearity of the reconstruction process. The increased scatter content inherent in the image acquisition process represents a fundamental limitation of these new imaging geometries, and a new, efficient approach to scatter correction is needed. An efficient scatter correction must calculate and correct for scatter at each point in each image, should do so without requiring additional x-ray dose to the patient, should not increase the total scan time, should not add significantly to the time between data acquisition and 3D image visualization, should not introduce new artifacts, and should be widely applicable. We have developed a new, encoder-measurement-based approach for scatter correction that meets these criteria. The approach uses a primary beam modulator to encode the primary, while leaving the frequency characteristics of the scatter relatively unaffected. Simple image processing can then be used to estimate and remove the scatter signal from the projection data. We have promising results from simulations and from physical experiments on a well- characterized and stable bench-top CT system. The overall goal of this research program is to extend and optimize our approach, and to demonstrate that we can achieve an attenuation coefficient accuracy of 5 HU over a 30-cm uniform object and accuracy of 10 HU in an object with variable attenuation (ie. a clinically relevant object) for three clinical systems. Our approach has the potential to be a disruptive technology that could significantly change the way clinical systems are designed today, and could facilitate the design and translation into the clinic of new, large volume CT imaging systems.
描述(由申请人提供):过去10年,CT图像的获取方式发生了重大变化。商用CT扫描仪已经从2片发展到64片,平板薄膜晶体管和其他更大面积的数字x射线探测器的发展已经产生了z轴范围为20厘米或更大的体积成像系统。随着同时被照射的组织体积的增加,到达探测器的散射辐射信号也随之增加。记录的投影图像中的散射信号导致图像对比度降低,拔罐和衰减系数的不准确性增加,重建的CT图像中出现条纹伪影。由于重建过程的非线性,即使只有几个百分点的散射比(SPRs)也会产生显著的条纹。图像采集过程中固有的增加的散射内容代表了这些新成像几何的基本限制,并且需要一种新的,有效的散射校正方法。有效的散射校正必须计算和校正每张图像中每个点的散射,不需要给患者额外的x射线剂量,不应该增加总扫描时间,不应该显著增加数据采集和3D图像可视化之间的时间,不应该引入新的伪影,并且应该广泛适用。我们开发了一种新的、基于编码器测量的散射校正方法,满足这些标准。该方法使用一次波束调制器对一次波束进行编码,同时使散射的频率特性相对不受影响。然后可以使用简单的图像处理来估计和去除投影数据中的散射信号。我们在一个性能良好、稳定的台式CT系统上进行了模拟和物理实验,得到了令人满意的结果。本研究计划的总体目标是扩展和优化我们的方法,并证明我们可以在30厘米均匀物体上实现5 HU的衰减系数精度,在可变衰减物体上实现10 HU的精度。(临床相关对象)用于三个临床系统。我们的方法有可能成为一种颠覆性的技术,可以显著改变当今临床系统的设计方式,并可以促进新的大容量CT成像系统的设计和转化到临床。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Fahrig其他文献

Rebecca Fahrig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Fahrig', 18)}}的其他基金

MR-Compatible Linac Gun for Robotic Linac Adaptation
用于机器人直线加速器适配的 MR 兼容直线加速枪
  • 批准号:
    8413455
  • 财政年份:
    2013
  • 资助金额:
    $ 23.7万
  • 项目类别:
Dual kV/MV Imaging for Metal Artifact Reduction
用于减少金属伪影的双 kV/MV 成像
  • 批准号:
    7886175
  • 财政年份:
    2010
  • 资助金额:
    $ 23.7万
  • 项目类别:
Dual kV/MV Imaging for Metal Artifact Reduction
用于减少金属伪影的双 kV/MV 成像
  • 批准号:
    8063158
  • 财政年份:
    2010
  • 资助金额:
    $ 23.7万
  • 项目类别:
Axiom zeego shared instrument grant
Axiom zeego 共享仪器补助
  • 批准号:
    7792710
  • 财政年份:
    2010
  • 资助金额:
    $ 23.7万
  • 项目类别:
Dual kV/MV Imaging for Metal Artifact Reduction
用于减少金属伪影的双 kV/MV 成像
  • 批准号:
    8214600
  • 财政年份:
    2010
  • 资助金额:
    $ 23.7万
  • 项目类别:
Dual kV/MV Imaging for Metal Artifact Reduction
用于减少金属伪影的双 kV/MV 成像
  • 批准号:
    8433481
  • 财政年份:
    2010
  • 资助金额:
    $ 23.7万
  • 项目类别:
Ultrafast Tomosynthesis for Transbronchial Biopsy Guidance
用于经支气管活检指导的超快断层合成
  • 批准号:
    8007442
  • 财政年份:
    2009
  • 资助金额:
    $ 23.7万
  • 项目类别:
C-Arm CT for Guidence of Cardiac Interventions
C 型臂 CT 指导心脏介入治疗
  • 批准号:
    7915280
  • 财政年份:
    2009
  • 资助金额:
    $ 23.7万
  • 项目类别:
Ultrafast Tomosynthesis for Transbronchial Biopsy Guidance
用于经支气管活检指导的超快断层合成
  • 批准号:
    7772704
  • 财政年份:
    2009
  • 资助金额:
    $ 23.7万
  • 项目类别:
C-Arm CT for Guidence of Cardiac Interventions
C 型臂 CT 指导心脏介入治疗
  • 批准号:
    7554192
  • 财政年份:
    2009
  • 资助金额:
    $ 23.7万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了