Application of machine learning to condensed matter physics

机器学习在凝聚态物理中的应用

基本信息

  • 批准号:
    2904795
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Machine learning has already proven to be one of the most influential discoveries of our time. It has found widespread applications in almost every scientific field, becoming an essential predictor of important properties of condensed matter materials. Developing purpose-built machine learning algorithms for studying these properties would streamline research in the search for new desirable materials from the extremely vast number of possible constructions. The proposed research will pioneer an interdisciplinary approach, utilising both novel machine learning techniques and quantum computing algorithms to study condensed matter systems. This combination will be well-suited to yield insights into the quantum mechanical behavior of these materials.Condensed matter physics is the study and modeling of solid-state materials using quantum mechanical descriptions. Due to many quantum interactions, finding exact solutions to these descriptions is not feasible. There have been attempts to develop computational methods that can closely approximate these emergent properties so that new materials can be designed with desirable features. Neural networks appear to be an ideal method to analyze these systems. They are highly effective at efficiently searching through large search spaces, making them applicable to condensed matter problems, which feature a broad array of possible material constructions.Purpose-built condensed matter neural networks could provide significant insights into the physics of condensed matter systems. The proposed research aims to redesign neural network algorithms with the guiding principle of removing implicit assumptions already identified in the current formulations. This will increase the symmetry properties of networks, consequently making it particularly applicable to condensed matter systems that feature many analogous symmetries. These redesigns appear to be widely applicable, even outside the domain of condensed matter applications; the resulting research should be influential, with many functions that can be overhauled using this symmetry principle.This project will consist of a novel and large overhaul of many aspects of current neural networks, with far-reaching improvements across many of their applications. Particularly, the approach of removing implicit assumptions and consequently introducing symmetries will have a substantial impact in condensed matter physics and quantum machine learning, with improvements to quantum machine learning aiding further advances in condensed matter modeling.Below is a summary of the expected outcomes of this work:New highly efficient neural network functions exhibiting symmetries applicable to condensed matter systems. These should allow the network to represent and manipulate data more effectively.Improved predictions of the properties of condensed matter systems.Potential to design materials by specifying the desired characteristics.Insight into the nature of how neural networks embed and manipulate data.Interfaces with quantum machine learning and new activation functions that better convey quantum mechanical probabilities.Further advances in recurrent neural network models, with improved memory efficiency. This should allow for an iterative approach to modeling condensed matter systems.
机器学习已经被证明是我们这个时代最有影响力的发现之一。它在几乎每个科学领域都有广泛的应用,成为凝聚态材料重要性质的重要预测者。开发专门用于研究这些特性的机器学习算法将简化从极其大量的可能结构中寻找新的理想材料的研究。拟议的研究将开创一种跨学科的方法,利用新的机器学习技术和量子计算算法来研究凝聚态系统。这种结合将非常适合于深入了解这些材料的量子力学行为。凝聚态物理学是使用量子力学描述研究和建模固态材料。由于许多量子相互作用,找到这些描述的精确解是不可行的。已经有人尝试开发计算方法,可以接近这些新兴的属性,使新材料可以设计出理想的功能。神经网络似乎是分析这些系统的理想方法。它们在大搜索空间中高效搜索时非常有效,使其适用于凝聚态问题,这些问题具有广泛的可能材料结构。专门构建的凝聚态神经网络可以为凝聚态系统的物理学提供重要见解。拟议的研究旨在重新设计神经网络算法,其指导原则是删除当前公式中已经确定的隐含假设。这将增加网络的对称性,从而使其特别适用于具有许多类似对称性的凝聚态系统。这些重新设计似乎是广泛适用的,甚至在凝聚态应用领域之外;由此产生的研究应该是有影响力的,许多功能可以使用这种对称性原理进行大修。这个项目将包括对当前神经网络的许多方面进行新颖和大规模的大修,并在其许多应用中进行深远的改进。特别是,去除隐含假设并由此引入对称性的方法将对凝聚态物理和量子机器学习产生重大影响,量子机器学习的改进有助于凝聚态建模的进一步发展。以下是这项工作的预期成果总结:适用于凝聚态系统的具有对称性的新型高效神经网络函数。这些应该使网络能够更有效地表示和操作数据。改进对凝聚态系统属性的预测。通过指定所需特征来设计材料的潜力。深入了解神经网络如何嵌入和操作数据的本质。与量子机器学习和新的激活函数接口,更好地传达量子力学概率。循环神经网络模型的进一步进展,具有改进的存储器效率。这应该允许一个迭代的方法来模拟凝聚态系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Application to machine learning using discomfort detected by EEG as a feedback index
以脑电图检测到的不适作为反馈指标在机器学习中的应用
  • 批准号:
    23K11209
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sustainable Maritime Transportation Network considering Sulphur Fuel Regulation - Application of Advanced Machine Learning and Optimization
考虑硫燃料监管的可持续海上运输网络 - 先进机器学习和优化的应用
  • 批准号:
    2885828
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
  • 批准号:
    2244976
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Prediction of Phase Transition Behavior by Machine Learning to Interpret Molecular Arrangement and Application to Photofunctional Liquid Crystals
通过机器学习预测相变行为以解释分子排列及其在光功能液晶中的应用
  • 批准号:
    22KJ1964
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Extraction of Vital Signs using a Telehealth Application for Asthma - EViTA-AThe purpose of this grant is to evaluate mobile devices to extract vitals signs to monitor patients with Asthma
使用哮喘远程医疗应用程序提取生命体征 - EViTA-A 这项拨款的目的是评估移动设备提取生命体征以监测哮喘患者
  • 批准号:
    10699530
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Machine-learning based bias correction of atmospheric chemistry simulations and its application to photochemical air pollution analysis
基于机器学习的大气化学模拟偏差校正及其在光化学空气污染分析中的应用
  • 批准号:
    23K11411
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了