Development of a Small High Bandwidth Telemetry System for Neurophysiology

用于神经生理学的小型高带宽遥测系统的开发

基本信息

  • 批准号:
    7159355
  • 负责人:
  • 金额:
    $ 16.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-12-16 至 2008-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): There is a current need in the field of auditory neurophysiology for a small high bandwidth telemetry system that will enable the recording of many channels of neural activity in unrestrained animals in response to natural acoustic stimuli. Such a system will provide a powerful tool that will be used to trace neural pathways that process species-specific vocalizations. The transmitter will provide up to 64 neural channels where each channel will be sampled at 50 KHz and will be 1 cm3 in size. It will be designed to allow up to eight simultaneous systems, which will permit researchers to study interactions, vocal exchanges, and communications between and among animals within a social group or colony. The transmitter will be designed to provide an interface to record acoustic signals from several small mounted microphones. Recording both acoustic and neural channels simultaneously will allow these signals to be correlated. Although the system will be targeted at auditory neurophysiology in marmosets, it will be general enough to be used in many neuroethology applications. Specific Aim 1: To develop a 5.8 GHz transmitter that is 1 cm2 in size and that consumes only 90mW of power. The transmitter will be designed to allow up to eight systems to occupy the 5.8 GHz ISM band simultaneously. Specific Aim 2: To develop an amplifier and multiplexer front end for 64 channels that will fit on several boards of size 1 cm2. This will be accomplished by a chip-on-board approach. This will allow the 5.8 GHz transmitter and analog front end to be 1 cm3 in size. Specific Aim 3: To develop a flexible on-line data analysis and Ethernet backend to the telemetry system so that functions such as spike sorting and/or reverse correlation can be performed in real-time as data is collected. Health Relevance: It is believed that studying the neuroethological aspects of communication sounds will contribute most to the understanding of how speech sounds are processed by humans. Studying how a vocally active primate can identify and extract behaviorally relevant vocalizations from other sounds will provide a model that will allow the development of signal processing algorithms that can extract speech signals from other non-speech sounds. This will have a direct impact on improving engineering applications such as robust speech recognition systems and hearing aids.
描述(由申请人提供):听觉神经生理学领域目前需要一种小型高带宽遥测系统,该系统将能够记录不受约束的动物对自然声刺激的许多神经活动通道。这样的系统将提供一个强大的工具,用于追踪处理特定物种发声的神经通路。发射机将提供多达64个神经通道,其中每个通道将以50 KHz采样,并将为1 cm3的大小。它将被设计成允许多达八个同时系统,这将允许研究人员研究社会群体或群体中动物之间的相互作用,声音交流和通信。发射机将被设计成提供一个接口来记录来自几个小型安装麦克风的声音信号。同时记录声波和神经通道将使这些信号相互关联。虽然该系统将针对狨猴的听觉神经生理学,但它将足以用于许多神经行为学应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ross Kenneth Snider其他文献

Ross Kenneth Snider的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ross Kenneth Snider', 18)}}的其他基金

Development of an Open Speech Signal Processing Platform
开放式语音信号处理平台的开发
  • 批准号:
    9548311
  • 财政年份:
    2016
  • 资助金额:
    $ 16.69万
  • 项目类别:
Real Time Proteomic Analysis of Peptides and Proteins
肽和蛋白质的实时蛋白质组分析
  • 批准号:
    6965407
  • 财政年份:
    2005
  • 资助金额:
    $ 16.69万
  • 项目类别:
Real Time Proteomic Analysis of Peptides and Proteins
肽和蛋白质的实时蛋白质组分析
  • 批准号:
    7125162
  • 财政年份:
    2005
  • 资助金额:
    $ 16.69万
  • 项目类别:
Development:Small High Bandwidth Telemetry System
开发:小型高带宽遥测系统
  • 批准号:
    7017559
  • 财政年份:
    2005
  • 资助金额:
    $ 16.69万
  • 项目类别:
Developing a Reconfigurable On-Line Modeling Platform
开发可重构在线建模平台
  • 批准号:
    6689696
  • 财政年份:
    2003
  • 资助金额:
    $ 16.69万
  • 项目类别:
Developing a Reconfigurable On-Line Modeling Platform
开发可重构在线建模平台
  • 批准号:
    6794131
  • 财政年份:
    2003
  • 资助金额:
    $ 16.69万
  • 项目类别:
Population Coding of Species-Specific Vocalizations
物种特定发声的群体编码
  • 批准号:
    6494509
  • 财政年份:
    2002
  • 资助金额:
    $ 16.69万
  • 项目类别:
Population Coding of Species-Specific Vocalizations
物种特定发声的群体编码
  • 批准号:
    6766889
  • 财政年份:
    2002
  • 资助金额:
    $ 16.69万
  • 项目类别:
Population Coding of Species-Specific Vocalizations
物种特定发声的群体编码
  • 批准号:
    6646585
  • 财政年份:
    2002
  • 资助金额:
    $ 16.69万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 16.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了