Reducing Drug Name Confusion With Better Search Software

通过更好的搜索软件减少药物名称混淆

基本信息

  • 批准号:
    7273372
  • 负责人:
  • 金额:
    $ 38.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-04-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Confusions between drug names that look and sound alike (e.g., Keppra(r) and Kaletra(r), Indocid(r) and Endocet(r)) continue to occur frequently, and each confusion poses a threat to patient safety.2-5 Our long term objective is to design, build, test and continuously improve tools that minimize the harm caused by drug name confusion errors. For a patient to be harmed, an error must occur and it must go undetected until it reaches the patient. Harm is minimized either by preventing the error from occurring in the first place or by rapidly detecting the error so its adverse effects can be mitigated. Both prevention and mitigation efforts have been hindered by the lack of valid, reliable and efficient methods for assessing name confusion error rates. The gold standard for measuring medication error rates is direct observation of the prescribing-dispensing- administering process. This method is valid and reliable but is too time consuming and expensive to be widely used. As a result, many error reduction interventions have been designed, but few have been tested, and their effectiveness is, for the most part, unknown. Similarly, efforts to mitigate the effects of wrong drug errors are virtually non-existent because there has been no accurate and efficient way to detect such errors after they occur. The key to improving both prevention and mitigation of harm is the development of scalable, efficient, valid and reliable methods for detecting these drug name confusion errors. Our short-term goal is to develop and validate an algorithm for detecting drug name confusion errors by analyzing suspicious patterns in real-world prescription drug databases (in our case, integrated electronic medical records from the US Veterans Health Administration). We plan to test the following three hypotheses: 1. Computerized measures of drug name confusability can be used to identify wrong-drug errors in real-world prescription drug databases. 2. The number of errors detected will increase as the predicted probability of confusion increases. 3. The classification performance of the error detection algorithm (i.e., its accuracy, sensitivity and specificity) can be enhanced by applying machine learning techniques and by incorporating additional information from the electronic medical record (e.g., time between refills, diagnosis, lab values, demographics, etc.) To test these hypotheses, we propose studies with the following specific aims: 1. To design and implement an algorithm for the detection of suspicious patterns in prescription drug databases. 2. To test and validate this algorithm using real-world prescription data from the US Veterans Health Administration. 3. To use machine learning techniques to optimize and further validate the performance of the error detection algorithm, incorporating additional information from the electronic medical record. Health care professionals often confuse drug names that look and sound alike. Wrong drug errors occur in hospitals and in community pharmacies and can cause serious harm to patients. Our project seeks to improve patient safety by developing and testing new techniques for detecting wrong drug errors in integrated electronic medical records.
描述(由申请人提供):外观和发音相似的药物名称之间的混淆(例如,Keppra(r)和Kaletra(r), Indocid(r)和Endocet(r))继续频繁发生,每种混淆都对患者安全构成威胁。我们的长期目标是设计、构建、测试和持续改进工具,将药品名称混淆错误造成的危害降至最低。要使病人受到伤害,必须发生错误,而且必须在错误到达病人身上之前不被发现。通过从一开始就防止错误发生,或者通过快速检测错误以减轻其不利影响,可以将危害降到最低。由于缺乏评估名称混淆错误率的有效、可靠和有效的方法,预防和减轻工作都受到了阻碍。测量用药错误率的金标准是直接观察处方-调剂-给药过程。该方法有效可靠,但耗时长,成本高,难以推广应用。因此,设计了许多减少错误的干预措施,但很少经过测试,而且它们的有效性在很大程度上是未知的。同样,减轻药物错误影响的努力实际上是不存在的,因为没有准确和有效的方法来检测此类错误发生后的影响。改进预防和减轻危害的关键是开发可扩展、高效、有效和可靠的方法来检测这些药物名称混淆错误。我们的短期目标是开发并验证一种算法,通过分析现实世界处方药数据库中的可疑模式(在我们的案例中,是来自美国退伍军人健康管理局的集成电子医疗记录)来检测药物名称混淆错误。我们计划检验以下三个假设:1。药物名称混淆的计算机测量方法可用于识别真实世界处方药数据库中的错误药物。2. 检测到的错误数量将随着预测的混淆概率的增加而增加。3. 错误检测算法的分类性能(即其准确性,灵敏度和特异性)可以通过应用机器学习技术并通过合并来自电子病历的附加信息(例如,重新填充的时间,诊断,实验室值,人口统计等)来增强。设计并实现一种检测处方药物数据库中可疑模式的算法。2. 使用美国退伍军人健康管理局的真实处方数据来测试和验证这一算法。使用机器学习技术来优化和进一步验证错误检测算法的性能,并结合来自电子病历的附加信息。卫生保健专业人员经常混淆外观和发音相似的药物名称。错误用药发生在医院和社区药房,对患者造成严重伤害。我们的项目旨在通过开发和测试在综合电子医疗记录中检测错误药物错误的新技术来改善患者安全。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

King Lup Liu其他文献

King Lup Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('King Lup Liu', 18)}}的其他基金

Reducing Drug Name Confusion with Better Search Software
使用更好的搜索软件减少药物名称混淆
  • 批准号:
    6880562
  • 财政年份:
    2005
  • 资助金额:
    $ 38.88万
  • 项目类别:
Reducing Drug Name Confusion With Better Search Software
通过更好的搜索软件减少药物名称混淆
  • 批准号:
    7501496
  • 财政年份:
    2005
  • 资助金额:
    $ 38.88万
  • 项目类别:

相似海外基金

Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 38.88万
  • 项目类别:
Autonomous spectral fingerprinting of consumable oil adulteration via terahertz time-domain spectroscopy and classification algorithms for real time food processing safety and quality assurance.
通过太赫兹时域光谱和分类算法对食用油掺假进行自主光谱指纹识别,以实现实时食品加工安全和质量保证。
  • 批准号:
    560133-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Two-Photon-Merging Classification via Machine Learning Algorithms
通过机器学习算法进行双光子合并分类
  • 批准号:
    573825-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 38.88万
  • 项目类别:
    University Undergraduate Student Research Awards
Autonomous spectral fingerprinting of consumable oil adulteration via terahertz time-domain spectroscopy and classification algorithms for real time food processing safety and quality assurance.
通过太赫兹时域光谱和分类算法对食用油掺假进行自主光谱指纹识别,以实现实时食品加工安全和质量保证。
  • 批准号:
    560133-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of machine-learning chemometric algorithms for spectral classification
用于光谱分类的机器学习化学计量算法的研究
  • 批准号:
    563863-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    University Undergraduate Student Research Awards
Shower Classification via Machine Learning Algorithms
通过机器学习算法进行淋浴分类
  • 批准号:
    563145-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    University Undergraduate Student Research Awards
Application and design of algorithms for classification and aggregation of citizen science game data
公民科学游戏数据分类聚合算法的应用与设计
  • 批准号:
    562382-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    University Undergraduate Student Research Awards
An investigation into the application of machine learning algorithms for the discrimination, classification and optimal application of a military (nuc
机器学习算法在军队识别、分类和优化应用中的应用研究(nuc
  • 批准号:
    2750505
  • 财政年份:
    2021
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Studentship
Machine-Learning Algorithms for Particle-Pattern Classification
用于粒子模式分类的机器学习算法
  • 批准号:
    538286-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 38.88万
  • 项目类别:
    University Undergraduate Student Research Awards
EAGER: Development of 3D Second Harmonic Generation Tomography and Deep Learning Algorithms for Classification of Human Ovarian Cancer
EAGER:开发用于人类卵巢癌分类的 3D 二次谐波生成断层扫描和深度学习算法
  • 批准号:
    1830964
  • 财政年份:
    2018
  • 资助金额:
    $ 38.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了