Identifying Genetic Factors for Predisposition in Polygenic Diseases

确定多基因疾病易感性的遗传因素

基本信息

  • 批准号:
    7220047
  • 负责人:
  • 金额:
    $ 8.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-10 至 2009-04-09
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal focuses on the development of an algorithm for determining the underlying factors responsible for predisposition to or protection from polygenic diseases. The algorithm relies on Markov chain Monte Carlo exploration of the space of possible genetic variants coupled to a Bayesian statistical test based on phenotypic ranks. The developed algorithm will improve our ability to reduce complex genetic interactions from the growing genotypic and single nucleotide polymorphism databases. The identification of interacting genetic variants placing individuals at risk for or providing protection from the development of polygenic diseases remains a problem both for our understanding of these diseases and for our ability to develop new treatments. Fundamentally, the problem involves the inability of standard statistical approaches to achieve power in the face of the enormous growth in our knowledge of genomics, brought about by the various genome projects and high throughput single nucleotide polymorphism (SNP) and genotype analyses. Similar "curse of dimensionality" problems have arisen in other fields, and Bayesian statistical approaches coupled to Markov chain Monte Carlo (MCMC) techniques have led to significant improvements in understanding, which has led to our focus on this technique here. Because polygenic diseases are much more widespread than single gene diseases, the potential impact on health is substantial, and many common diseases are believed to have a polygenic basis, including obesity, cardiac disease, and Type II diabetes. A method to dissect the complex genetic interactions underlying predisposition to or protection from polygenic diseases would have a substantial effect on improving health. We will disseminate the algorithm through publications and presentations at conferences. We will also through contact individuals in foundations focused on research in specific complex diseases, so that the algorithm can have the maximal impact on health. Upon successful completion of this project, we plan to develop the algorithm more fully. We would like to modularize the algorithm, allowing easier inclusion of different prior distributions and implement a more friendly interface with the ability to utilize the emerging bioinformatics standards for data exchange.
描述(由申请人提供):该提案的重点是开发一种算法,用于确定导致多基因疾病易感性或预防多基因疾病的潜在因素。该算法依赖于对可能遗传变异空间的马尔可夫链蒙特卡罗探索以及基于表型等级的贝叶斯统计测试。开发的算法将提高我们从不断增长的基因型和单核苷酸多态性数据库中减少复杂遗传相互作用的能力。鉴定使个体面临多基因疾病发展风险或提供保护以免受多基因疾病发展的相互作用的遗传变异仍然是我们对这些疾病的理解和开发新疗法的能力的一个问题。从根本上说,问题在于面对各种基因组计划和高通量单核苷酸多态性(SNP)和基因型分析带来的基因组学知识的巨大增长,标准统计方法无法发挥作用。类似的“维数灾难”问题在其他领域也出现了,贝叶斯统计方法与马尔可夫链蒙特卡罗(MCMC)技术相结合导致了理解上的显着提高,这导致我们在这里重点关注这项技术。由于多基因疾病比单基因疾病广泛得多,因此对健康的潜在影响是巨大的,许多常见疾病被认为具有多基因基础,包括肥胖、心脏病和 II 型糖尿病。剖析多基因疾病易感性或预防多基因疾病背后的复杂遗传相互作用的方法将对改善健康产生重大影响。我们将通过出版物和演示来传播该算法 会议。我们还将通过联系专注于特定复杂疾病研究的基金会中的个人,使算法能够对健康产生最大的影响。成功完成该项目后,我们计划更全面地开发该算法。我们希望模块化算法,以便更容易地包含不同的先验分布,并实现更友好的界面,能够利用新兴的生物信息学标准进行数据交换。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael F Ochs其他文献

Michael F Ochs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael F Ochs', 18)}}的其他基金

Modeling Transcriptional Reprogramming by Markov Chain Monte Carlo Sampling
通过马尔可夫链蒙特卡罗采样模拟转录重编程
  • 批准号:
    8236473
  • 财政年份:
    2012
  • 资助金额:
    $ 8.3万
  • 项目类别:
Modeling Transcriptional Reprogramming by Markov Chain Monte Carlo Sampling
通过马尔可夫链蒙特卡罗采样模拟转录重编程
  • 批准号:
    8724559
  • 财政年份:
    2012
  • 资助金额:
    $ 8.3万
  • 项目类别:
An Open-Source Algorithm Isolating Overlapping Signatures in Microarray Data
一种隔离微阵列数据中重叠特征的开源算法
  • 批准号:
    7922313
  • 财政年份:
    2009
  • 资助金额:
    $ 8.3万
  • 项目类别:
An Open-Source Algorithm Isolating Overlapping Signatures in Microarray Data
一种隔离微阵列数据中重叠特征的开源算法
  • 批准号:
    7682309
  • 财政年份:
    2008
  • 资助金额:
    $ 8.3万
  • 项目类别:
An Open-Source Algorithm Isolating Overlapping Signatures in Microarray Data
一种隔离微阵列数据中重叠特征的开源算法
  • 批准号:
    7464236
  • 财政年份:
    2008
  • 资助金额:
    $ 8.3万
  • 项目类别:
Identifying Genetic Factors for Predisposition in Polygenic Diseases
确定多基因疾病易感性的遗传因素
  • 批准号:
    7014706
  • 财政年份:
    2006
  • 资助金额:
    $ 8.3万
  • 项目类别:
Analysis and Annotation Pipeline for Functional Genomics
功能基因组学的分析和注释流程
  • 批准号:
    6867168
  • 财政年份:
    2005
  • 资助金额:
    $ 8.3万
  • 项目类别:
Analysis and Annotation Pipeline for Functional Genomics
功能基因组学的分析和注释流程
  • 批准号:
    7008125
  • 财政年份:
    2005
  • 资助金额:
    $ 8.3万
  • 项目类别:
BIOINFORMATICS
生物信息学
  • 批准号:
    8559551
  • 财政年份:
    1997
  • 资助金额:
    $ 8.3万
  • 项目类别:
BIOINFORMATICS
生物信息学
  • 批准号:
    8559772
  • 财政年份:
  • 资助金额:
    $ 8.3万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 8.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了