Modeling Transcriptional Reprogramming by Markov Chain Monte Carlo Sampling
通过马尔可夫链蒙特卡罗采样模拟转录重编程
基本信息
- 批准号:8724559
- 负责人:
- 金额:$ 28.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutoimmune DiseasesBehaviorBinding SitesBiologicalBiological MarkersBiological ModelsBiological ProcessCancer cell lineCellsComplexCoupledCouplesDataData AnalysesDevelopmentDiabetes MellitusDiagnosisDiagnosticDiseaseExploratory/Developmental GrantFeedbackFoundationsGene ExpressionGene Expression RegulationGene MutationGene SilencingGene TargetingGenesGenomeGlucoseHomeostasisIndividualInterventionKnowledgeLeadLightLinkMalignant NeoplasmsMarkov ChainsMarkov chain Monte Carlo methodologyMeasurementMeasuresMedicineMethodologyMethodsMethylationMicroRNAsMicroarray AnalysisModelingModificationMolecularMultiple SclerosisMutationNetwork-basedNon-linear ModelsOutcomePathway interactionsPhenotypePlayProbabilityProcessProductionPromoter RegionsProteinsRegulationResourcesRoleSignal TransductionStreamSystemTherapeutic EffectTissuesTranscriptional RegulationWorkbasebiological systemscell behaviordesignglucose metabolismimprovedin vivoinsulin signalinginterestmutantnetwork modelsnovelopen sourceprotein protein interactiontherapeutic targettooltranscription factortreatment responsetumor
项目摘要
DESCRIPTION (provided by applicant): Complex diseases, including cancer and multiple sclerosis, arise when multiple biological systems are impacted by molecular changes, such as gene mutation, gene silencing, or cellular modification by external agents. These molecular changes lead to changes in the cellular state, almost always including reprogramming of gene expression. Because biological systems are inherently complex and nonlinear, appropriate modeling of the system is required to recover knowledge of systems-level behavior in many cases. We focus in this proposal on methods to improve our ability to infer biological process activity from high- throughput data and on the development of biomarkers of these processes.
We have developed a Markov chain Monte Carlo algorithm for analysis of microarray data that combines knowledge of transcriptional regulation and simple models of signaling networks to identify on-target and off- targets effects of therapeutics in cancer. Here we propose including prior knowledge in this algorithm by integrating data from pathways, gene mutations, methylation arrays, miRNA arrays, and protein-protein interactions (PPIs) to improve inference of cell behavior at a systems-level. Our first aim will develop an integrated model of signaling coupled to transcriptional reprogramming that couples knowledge of pathways to measurements of mutation status and miRNA levels to improve estimation of cell signaling. Our second aim will integrate methylation measurements and transcription factor binding site information as prior data to refine inference of targets of transcription factors to improve gene set inference and estimation of upstream signaling. Our third aim will develop a methodology to find reliable biomarkers from our models in light of multiple regulation of genes.
Successful completion of the proposed work will provide novel open-source tools for improved inference on and biomarker identification of transcriptional reprogramming of cells. This will substantially improve inference of the specific changes that drive systems out of homeostasis and of treatment response in individual cases.
描述(申请人提供):复杂的疾病,包括癌症和多发性硬化症,当多种生物系统受到分子变化的影响时,如基因突变、基因沉默或外部因素对细胞的修饰,就会发生。这些分子变化导致细胞状态的变化,几乎总是包括基因表达的重新编程。由于生物系统本质上是复杂的和非线性的,在许多情况下,需要对系统进行适当的建模来恢复系统级行为的知识。在这项提案中,我们的重点是提高我们从高通量数据推断生物过程活动的能力的方法,以及这些过程的生物标记物的开发。
我们开发了一种用于分析微阵列数据的马尔可夫链蒙特卡罗算法,该算法结合了转录调控知识和简单的信号网络模型,以识别癌症治疗药物的靶上和靶外效应。在这里,我们建议通过整合来自通路、基因突变、甲基化阵列、miRNA阵列和蛋白质-蛋白质相互作用(PPI)的数据来在系统水平上改进对细胞行为的推断,从而在该算法中包括先验知识。我们的第一个目标是开发一个与转录重编程相结合的集成信号模型,将路径知识与突变状态和miRNA水平的测量结合起来,以改进对细胞信号的估计。我们的第二个目标是将甲基化测量和转录因子结合位点信息作为先验数据来改进对转录因子靶标的推断,以改进对上游信号的基因集推断和估计。我们的第三个目标将开发一种方法学,根据基因的多重调控,从我们的模型中寻找可靠的生物标记物。
拟议工作的成功完成将为改进对细胞转录重编程的推断和生物标记物识别提供新的开源工具。这将大大改善对驱动系统脱离内稳态的具体变化的推断,以及对个别病例的治疗反应的推断。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implications of systemic dysfunction for the etiology of malignancy.
- DOI:10.4137/grsb.s10943
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Knox SS;Ochs MF
- 通讯作者:Ochs MF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael F Ochs其他文献
Michael F Ochs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael F Ochs', 18)}}的其他基金
Modeling Transcriptional Reprogramming by Markov Chain Monte Carlo Sampling
通过马尔可夫链蒙特卡罗采样模拟转录重编程
- 批准号:
8236473 - 财政年份:2012
- 资助金额:
$ 28.63万 - 项目类别:
An Open-Source Algorithm Isolating Overlapping Signatures in Microarray Data
一种隔离微阵列数据中重叠特征的开源算法
- 批准号:
7922313 - 财政年份:2009
- 资助金额:
$ 28.63万 - 项目类别:
An Open-Source Algorithm Isolating Overlapping Signatures in Microarray Data
一种隔离微阵列数据中重叠特征的开源算法
- 批准号:
7682309 - 财政年份:2008
- 资助金额:
$ 28.63万 - 项目类别:
An Open-Source Algorithm Isolating Overlapping Signatures in Microarray Data
一种隔离微阵列数据中重叠特征的开源算法
- 批准号:
7464236 - 财政年份:2008
- 资助金额:
$ 28.63万 - 项目类别:
Identifying Genetic Factors for Predisposition in Polygenic Diseases
确定多基因疾病易感性的遗传因素
- 批准号:
7220047 - 财政年份:2007
- 资助金额:
$ 28.63万 - 项目类别:
Identifying Genetic Factors for Predisposition in Polygenic Diseases
确定多基因疾病易感性的遗传因素
- 批准号:
7014706 - 财政年份:2006
- 资助金额:
$ 28.63万 - 项目类别:
Analysis and Annotation Pipeline for Functional Genomics
功能基因组学的分析和注释流程
- 批准号:
6867168 - 财政年份:2005
- 资助金额:
$ 28.63万 - 项目类别:
Analysis and Annotation Pipeline for Functional Genomics
功能基因组学的分析和注释流程
- 批准号:
7008125 - 财政年份:2005
- 资助金额:
$ 28.63万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
- 批准号:
479128 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Operating Grants
Effects of maternal immune activation on autoimmune diseases in offsprings
母体免疫激活对后代自身免疫性疾病的影响
- 批准号:
23H02155 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10788032 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Biomarkers of vascular endothelial dysfunction in systemic autoimmune diseases: analysis of circulating microRNAs
系统性自身免疫性疾病中血管内皮功能障碍的生物标志物:循环 microRNA 分析
- 批准号:
23K14742 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structural mechanisms of autoimmune diseases targeting cys-loop receptors
针对半胱氨酸环受体的自身免疫性疾病的结构机制
- 批准号:
10864719 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Developing non-immunosuppressive immune-based therapeutics for targeted treatment of autoimmune diseases
开发非免疫抑制性免疫疗法来靶向治疗自身免疫性疾病
- 批准号:
10586562 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
NOVEL HUMORAL AND CELLULAR BIOMARKERS OF AUTOIMMUNE DISEASES CAUSED BY IMMUNOTHERAPY
免疫治疗引起的自身免疫性疾病的新型体液和细胞生物标志物
- 批准号:
10593224 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Regulation of autoimmune diseases by PTPN22 phosphatase
PTPN22磷酸酶对自身免疫性疾病的调节
- 批准号:
23K06589 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Decipher and target GABA metabolism and GABA receptor-mediated signaling in autoimmune diseases
破译并靶向自身免疫性疾病中的 GABA 代谢和 GABA 受体介导的信号传导
- 批准号:
10623380 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别:
Targeting the long isoform of the prolactin receptor to treat autoimmune diseases and B-cell malignancies
靶向催乳素受体的长亚型来治疗自身免疫性疾病和 B 细胞恶性肿瘤
- 批准号:
10735148 - 财政年份:2023
- 资助金额:
$ 28.63万 - 项目类别: