Probing the Structure of the Synapse Using Superresolution Light Microscopy
使用超分辨率光学显微镜探测突触的结构
基本信息
- 批准号:7340350
- 负责人:
- 金额:$ 77.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-30 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAMPA ReceptorsAccountingAddressAlzheimer&aposs DiseaseAreaAttentionAutistic DisorderBindingBiochemicalBiochemical GeneticsBiological AssayBiologyBiophysicsBrainCOS-7 CellCartoonsCellsChemicalsChromosome PairingClassCollaborationsComplexComputer SimulationComputing MethodologiesCreativenessCulture TechniquesDataDepthDevelopmentDimensionsElectron MicroscopyElectronsEnsureEnvironmentEquilibriumEthaneEventExcitatory SynapseFaceFacultyFellowshipFire - disastersFluorescenceFluorescence MicroscopyFreezingFundingFutureGasesGlutamate ReceptorGoalsGreen Fluorescent ProteinsHealthHeavy MetalsHomeostasisImageImageryImmersion Investigative TechniqueImmobilizationIn SituIndividualInfluentialsInformation StorageInvertebratesKnock-in MouseLabelLearningLightLight MicroscopeLiquid substanceLocalizedLocationLong-Term PotentiationMapsMeasurementMeasuresMembrane ProteinsMemoryMethaneMethodologyMethodsMicroscopeMicroscopyMicrotomyModelingMolecularMolecular GeneticsMonitorNatureNeuronal PlasticityNeuronsNeurosciencesNeurotransmitter ReceptorNitrogenNoiseNumbersOpticsPatternPhotonsPhysiologic pulsePhysiologyPliabilityPoisson DistributionPositioning AttributePostdoctoral FellowPostsynaptic MembranePreparationProceduresProcessPropertyProtein KinaseProtein OverexpressionProteinsPublishingPulse takingPurposeRangeRefractive IndicesRegulationRelative (related person)ResearchResolutionRiskRoleSamplingScienceShoulderSideSignal TransductionSignaling MoleculeSiteSliceSlideSourceSpecimenStagingStandards of Weights and MeasuresStructural BiologistStructureSurfaceSynapsesSynaptic ReceptorsSynaptic plasticitySystemTechniquesTechnologyTemperatureTestingThickThinkingTimeVariantVisual CortexWaterWeightWidthWorkabstractingaddictionbasecalmodulin-dependent protein kinase IIcentral pattern generatorcognitive functioncold temperaturedensityexperiencefluorescence imagingfluorophorehippocampal pyramidal neuronin vivoinstrumentinstrumentationinterestintracellular protein transportlenslight microscopymembermolecular arrayneocorticalnervous system disordernew technologynovelnovel strategiespostsynapticpostsynaptic density proteinpresynaptic density protein 95programsprotein localization locationprotein protein interactionreceptorreceptor densityresponsesample fixationsizeskillssleep epilepsysmall moleculespatial relationshipstatisticsstructural biologysynaptic functionsynergismtechnology developmenttooltraffickingvisual deprivationyeast two hybrid system
项目摘要
Memory and other cognitive functions reside in part in the pattern and strength of synaptic connections between neurons. Understanding the molecular determinants of synaptic strength has been a longstanding goal of neuroscience, and advances in this field stand to influence our understanding of virtually every neurological disorder from Autism to Alzheimer?s disease. Over the past decade biochemical and conventional molecular and genetic approaches have begun to piece together how interactions between neurotransmitter receptors and other synaptic proteins regulate and control synaptic strength and plasticity, but a major limitation is that there is little or no structural information about how proteins are arranged into signaling complexes at the synapse. Many signaling molecules can only interact with immediately adjacent proteins, and this localization may itself be regulated by experience. Understanding how functional signaling complexes are generated and how they in turn regulate synaptic strength thus requires that we probe the spatial arrangements of proteins within the postsynaptic density (PSD). Conventional approaches do not have sufficient resolution to allow the position of synaptic proteins to be mapped within these tiny (< 1 im) synaptic structures. Here I propose to develop tools to map the spatial arrangements of individual synaptic proteins (such as glutamate receptors) within the PSD, and to determine how these spatial arrangements are influenced by synaptic plasticity, using super resolution light microscopy. By mapping the relative positions of many different proteins within the postsynaptic membrane and PSD we will be able to generate a 3 dimensional model of the protein lattices that comprise the postsynaptic side of the synapse. This method has the promise to put a vast array of biochemical and molecular data on protein-protein interactions into a structural context that is essential for its interpretation, and will add a powerful new tool to the analysis of synaptic function.
记忆和其他认知功能部分取决于神经元之间突触连接的模式和强度。了解突触强度的分子决定因素一直是神经科学的长期目标,这一领域的进展将影响我们对从自闭症到阿尔茨海默病的几乎所有神经系统疾病的理解。的疾病。在过去的十年中,生物化学和传统的分子和遗传学方法已经开始拼凑神经递质受体和其他突触蛋白之间的相互作用如何调节和控制突触强度和可塑性,但一个主要的限制是,很少或根本没有关于蛋白质如何在突触上排列成信号复合物的结构信息。许多信号分子只能与紧邻的蛋白质相互作用,这种定位本身可能受到经验的调节。了解功能性信号复合物是如何产生的,以及它们又是如何调节突触强度的,因此需要我们探测突触后密度(PSD)内蛋白质的空间排列。常规方法不具有足够的分辨率以允许在这些微小(< 1 μ m)突触结构内映射突触蛋白的位置。在这里,我建议开发工具来映射PSD内单个突触蛋白(如谷氨酸受体)的空间排列,并确定这些空间排列如何受到突触可塑性的影响,使用超分辨率光学显微镜。通过映射突触后膜和PSD内许多不同蛋白质的相对位置,我们将能够生成包含突触后侧的蛋白质晶格的三维模型。这种方法有希望把大量的生物化学和分子数据的蛋白质-蛋白质相互作用的结构背景下,这是必不可少的解释,并将增加一个强大的新工具,突触功能的分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GINA G TURRIGIANO其他文献
GINA G TURRIGIANO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GINA G TURRIGIANO', 18)}}的其他基金
Mechanisms and Function of Firing Rate Homeostasis in Cortical Circuits
皮层回路放电率稳态的机制和功能
- 批准号:
10891888 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
Mechanisms and Function of Firing Rate Homeostasis in Cortical Circuits
皮层回路放电率稳态的机制和功能
- 批准号:
10604278 - 财政年份:2019
- 资助金额:
$ 77.58万 - 项目类别:
Mechanisms and function of firing rate homeostasis in cortical circuits
皮质回路中放电率稳态的机制和功能
- 批准号:
9923773 - 财政年份:2019
- 资助金额:
$ 77.58万 - 项目类别:
Mechanisms and function of firing rate homeostasis in cortical circuits
皮质回路放电率稳态的机制和功能
- 批准号:
10391451 - 财政年份:2019
- 资助金额:
$ 77.58万 - 项目类别:
Gating of Firing Rate Homeostasis by Sleep and Wake States During Experience-Dependent Plasticity
经验依赖性可塑性期间睡眠和清醒状态对放电率稳态的门控
- 批准号:
9767198 - 财政年份:2017
- 资助金额:
$ 77.58万 - 项目类别:
Gating of Firing Rate Homeostasis by Sleep and Wake States During Experience-Dependent Plasticity
经验依赖性可塑性期间睡眠和清醒状态对放电率稳态的门控
- 批准号:
10610948 - 财政年份:2017
- 资助金额:
$ 77.58万 - 项目类别:
Gating of Firing Rate Homeostasis by Sleep and Wake States During Experience-Dependent Plasticity
经验依赖性可塑性期间睡眠和清醒状态对放电率稳态的门控
- 批准号:
10209082 - 财政年份:2017
- 资助金额:
$ 77.58万 - 项目类别:
Gating of Firing Rate Homeostasis by Sleep and Wake States During Experience-Dependent Plasticity
经验依赖性可塑性期间睡眠和清醒状态对放电率稳态的门控
- 批准号:
9546749 - 财政年份:2017
- 资助金额:
$ 77.58万 - 项目类别:
Gating of Firing Rate Homeostasis by Sleep and Wake States During Experience-Dependent Plasticity
经验依赖性可塑性期间睡眠和清醒状态对放电率稳态的门控
- 批准号:
9380563 - 财政年份:2017
- 资助金额:
$ 77.58万 - 项目类别:
Gating of Firing Rate Homeostasis by Sleep and Wake States During Experience-Dependent Plasticity
经验依赖性可塑性期间睡眠和清醒状态对放电率稳态的门控
- 批准号:
10396620 - 财政年份:2017
- 资助金额:
$ 77.58万 - 项目类别:
相似海外基金
Role of PSD-95-linked PDE4A5 in Regulation of AMPA Receptors
PSD-95 连接的 PDE4A5 在 AMPA 受体调节中的作用
- 批准号:
10829146 - 财政年份:2023
- 资助金额:
$ 77.58万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2022
- 资助金额:
$ 77.58万 - 项目类别:
Discovery Grants Program - Individual
In vivo Probe for ionotropic glutamate signaling system: AMPA receptors
离子型谷氨酸信号系统体内探针:AMPA 受体
- 批准号:
10584340 - 财政年份:2022
- 资助金额:
$ 77.58万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2021
- 资助金额:
$ 77.58万 - 项目类别:
Discovery Grants Program - Individual
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2020
- 资助金额:
$ 77.58万 - 项目类别:
Discovery Grants Program - Individual
Binding of Endophilin Endocytic Proteins to AMPA Receptors and Neuronal Voltage-gated Potassium (Kv) Channels: Regulation of Synaptic Plasticity
内亲素内吞蛋白与 AMPA 受体和神经元电压门控钾 (Kv) 通道的结合:突触可塑性的调节
- 批准号:
RGPIN-2015-03850 - 财政年份:2019
- 资助金额:
$ 77.58万 - 项目类别:
Discovery Grants Program - Individual
The missing link: Opioid modulation of AMPA receptors
缺失的环节:阿片类药物对 AMPA 受体的调节
- 批准号:
2253144 - 财政年份:2019
- 资助金额:
$ 77.58万 - 项目类别:
Studentship
Calcium-permeable AMPA receptors and their auxiliary subunits: pharmacological and molecular intervention in health and disease
钙渗透性 AMPA 受体及其辅助亚基:健康和疾病的药理学和分子干预
- 批准号:
MR/T002506/1 - 财政年份:2019
- 资助金额:
$ 77.58万 - 项目类别:
Research Grant
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2019
- 资助金额:
$ 77.58万 - 项目类别:
Discovery Grants Program - Individual
Life cycle of AMPA receptors under acute metabolic stress
急性代谢应激下 AMPA 受体的生命周期
- 批准号:
411538084 - 财政年份:2018
- 资助金额:
$ 77.58万 - 项目类别:
Research Units