Statistical Models In Toxicology And Biochemistry
毒理学和生物化学的统计模型
基本信息
- 批准号:7327698
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Project focuses on (1) The development of methodology for incorporating "cutting-edge" research findings into future risk assessments; (2) The development of methods for designing studies to improve risk estimates, especially when mechanistic data is involved; (3) The development of methods for the evaluation of exposure, dose-response shape and potency; (4) The development of methods for evaluating mixtures when multiple mechanisms are involved; (5) The development of methods which harmonize cancer and non-cancer health risk assessments; (6) Direct engagement of the regulatory community through expert panels, peer review and collaborative research; (7) Practical improvement of stochastic processes through careful linkage of theoretical developments with computational methods that are accurate and convenient; (8) Collaboration with research groups within the NIEHS and research groups doing similar work to improve the biological understanding of disease incidence; (9) Iterative improvement of the biological basis for disease incidence models through a process of hypothesis testing and laboratory research; (10) Linkage of disease incidence models to toxicokinetics models in a scientifically credible manner; (11) Use of the broadest array of data in both the development of the model and its application; (12) Support of the National Toxicology Program.
We developed a quantitative, statistically sound methodology for the analysis of suspected gene regulatory networks using gene expression data sets. The method is based on Bayesian networks and provides a means to directly quantify gene-expression networks and test hypotheses regarding the linkages between genes in this network.
该项目的重点是:(1)制定将“尖端”研究结果纳入未来风险评估的方法;(2)制定设计研究的方法,以改进风险估计,特别是在涉及机械数据时;(3)制定评估照射、剂量-反应形状和效力的方法;(4)制定涉及多种机制的混合物的评价方法;(5)制定协调癌症和非癌症健康风险评估的方法;(6)通过专家小组、同行审查和合作研究,让监管机构直接参与;(7)通过将理论发展与准确和方便的计算方法仔细联系起来,实际改进随机过程;(8)与NIEHS内的研究小组和从事类似工作的研究小组合作,提高对疾病发病率的生物学认识;(9)通过假设检验和实验室研究,不断改进疾病发病率模型的生物学基础;(10)以科学上可信的方式将疾病发病率模型与毒理学模型联系起来;(11)在模型的开发及其应用中使用最广泛的数据;(12)支持国家毒理学方案。
我们开发了一种定量的,统计学上合理的方法,用于分析可疑的基因调控网络,使用基因表达数据集。该方法是基于贝叶斯网络,并提供了一种手段,直接量化基因表达网络和测试假设的基因之间的联系,在这个网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher J Portier其他文献
A call from 40 public health scientists for an end to the continuing humanitarian and environmental catastrophe in Gaza
- DOI:
10.1186/s12940-024-01097-9 - 发表时间:
2024-06-28 - 期刊:
- 影响因子:5.900
- 作者:
Leslie London;Andrew Watterson;Donna Mergler;Maria Albin;Federico Andrade-Rivas;Agostino Di Ciaula;Pietro Comba;Fernanda Giannasi;Rima R Habib;Alastair Hay;Jane Hoppin;Peter Infante;Mohamed Jeebhay;Karl Kelsey;Rokho Kim;Richard Lemen;Hester Lipscomb;Elsebeth Lynge;Corrado Magnani;Celeste Monforton;Benoit Nemery;Vera Ngowi;Dennis Nowak;Iman Nuwayhid;Christine Oliver;David Ozonoff;Domyung Paek;Varduhi Petrosyan;Christopher J Portier;Beate Ritz;Linda Rosenstock;Kathleen Ruff;Peter Sly;Morando Soffritti;Colin L. Soskolne;William Suk;Benedetto Terracini;Harri Uolevi Vainio;Paolo Vineis;Roberta White - 通讯作者:
Roberta White
Christopher J Portier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher J Portier', 18)}}的其他基金
Receptor Interaction For TCDD And Its Structural Analogs
TCDD 及其结构类似物的受体相互作用
- 批准号:
6501230 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目














{{item.name}}会员




