Biochemistry of Energy-Dependent (Intracellular) Protein

能量依赖性(细胞内)蛋白质的生物化学

基本信息

项目摘要

Research conducted in the Biochemistry of Proteins Section is focused on the function and control of protein degradation in bacterial and human cells. Intracellular protein degradation plays a critical part in controlling the levels of important cellular regulatory proteins and is an essential component of the protein quality control system as well. Most protein degradation within the cytosol is carried out by ATP-dependent proteases, which are multi-component, molecular machines. The heart of the machine is an ATP-driven protein unfoldase that binds a specific protein target, disrupts its structure, and translocates the unfolded protein into the proteolytic chamber of a tightly associated self-compartmentalized endopeptidase. Our studies encompass structural and biochemical analysis of the ATP-dependent Clp and Lon proteases from E. coli and their homologs in human mitochondria. In the last year, progress has been made in several areas. Based on our crystal structure of ClpP with a covalently bound peptide at the active site, we have generated mutants with altered substrate interactions. Substrates have a mobile binding mode in which polypeptides interact through main chain hydrogen bonding and can slide within an extended active site groove. Only the P1 residue has a defined binding pocket. We have mutated residues within the S1 pocket and found that the activity of ClpP is drastically affected. Studies are underway to determine whether the specificity of cleavage is affected in mutants in which the surface properties of the S1 pocket have been altered. We have initiated rapid kinetic measurements of ClpP and ClpAP peptidase and protease activity in order to determine the initial events in substrate unfolding and translocation and the mechanism by which substrates enter the ClpP chamber. We have obtained biochemical evidence of a dynamic change in ClpP ring contacts that results in dissociation of the tetradecamer into two heptameric rings. This dissociation should reflect a conformational change in ClpP that occurs during the catalytic cycle and could be related to substrate entry into the chamber or release of peptide products from the chamber after degradation. ClpS, an adaptor for ClpA, inhibits ClpA activity in vitro substrates such as GFP-SsrA; however, in vivo, ClpS is required for degradation of a class of substrates called "N-end rule" proteins, which have non-canonical amino terminal residues. Model N-end rule substrates are degraded by ClpA in the presence of ClpS and the N-domain, which is the binding site for ClpS, is required for this degradation. We are in the process of identifying endogenous N-end rule substrates by trapping them in vivo using ClpA and ClpS in combination with inactivated ClpP. In vitro, ClpS inhibits ClpA activity at a stoichiometry of one ClpS per hexamer. We are using a combination of cryo-electron microscopy (in collaboration with A. C. Steven, NIAMS) and biochemical methods to determine the effects of ClpS on the structure of ClpA and the distribution of the N-domains with ClpS bound. A specific anti-SsrA antibody prepared in our laboratory, has been used to measure the half-lives endogenous SsrA-tagged proteins in vivo and to demonstrate that ClpXP plays the major role in degradation of these proteins. Other ATP-dependent proteases (Lon and ClpAP) can degrade SsrA-tagged proteins but their contribution can be seen only in the absence of ClpX. We have found that over expression of many proteins in E. coli results in significant generation of multiple forms of the protein with SsrA-tags. These proteins are mostly degraded by ClpXP but can accumulate to significant levels when ClpXP activity is compromised. In our project aimed at obtaining the crystal structure of ClpA hexamers, we have generated ClpA mutants introducing cysteine residues at the subunit contact points expected in the hexamer.
在蛋白质生物化学部门进行的研究主要集中在细菌和人类细胞中蛋白质降解的功能和控制。细胞内蛋白质降解在控制重要细胞调节蛋白的水平方面起着关键作用,也是蛋白质质量控制系统的重要组成部分。细胞质溶胶中的大多数蛋白质降解是由atp依赖的蛋白酶进行的,这是一种多组分的分子机器。机器的核心是atp驱动的蛋白质展开酶,它结合特定的蛋白质靶标,破坏其结构,并将未折叠的蛋白质易位到紧密相关的自区隔内肽酶的蛋白质水解室中。我们的研究包括对来自大肠杆菌的atp依赖性Clp和Lon蛋白酶及其在人类线粒体中的同源物的结构和生化分析。去年,在几个领域取得了进展。基于我们的ClpP的晶体结构,在活性位点有一个共价结合的肽,我们产生了底物相互作用改变的突变体。底物具有移动结合模式,其中多肽通过主链氢键相互作用,并且可以在延伸的活性位点凹槽内滑动。只有P1残基有明确的结合袋。我们在S1口袋内突变了残基,发现ClpP的活性受到了极大的影响。研究正在进行中,以确定在S1口袋的表面性质发生改变的突变体中,切割的特异性是否受到影响。我们已经启动了ClpP和ClpAP肽酶和蛋白酶活性的快速动力学测量,以确定底物展开和易位的初始事件以及底物进入ClpP腔室的机制。我们已经获得了ClpP环接触的动态变化的生化证据,导致四聚体解离成两个七聚体环。这种解离反应了ClpP在催化循环中发生的构象变化,可能与底物进入腔室或降解后肽产物从腔室释放有关。ClpS是ClpA的适配器,在体外底物如GFP-SsrA中抑制ClpA活性;然而,在体内,ClpS是降解一类被称为“n端规则”的底物所必需的,这些底物具有非规范的氨基末端残基。模型n端规则底物在ClpS存在的情况下被ClpA降解,并且这种降解需要作为ClpS结合位点的n结构域。我们正在鉴定内源性n端规则底物,通过将ClpA和ClpS与灭活的ClpP结合在体内捕获它们。在体外,ClpS以每六聚体一个ClpS的化学计量量抑制ClpA活性。我们正在使用冷冻电子显微镜(与a.c. Steven, NIAMS合作)和生化方法的组合来确定ClpS对ClpA结构的影响以及与ClpS结合的n结构域的分布。我们实验室制备了一种特异性抗ssra抗体,用于体内测量内源性ssra标记蛋白的半衰期,并证明ClpXP在这些蛋白的降解中起主要作用。其他atp依赖性蛋白酶(Lon和ClpAP)可以降解ssra标记的蛋白,但它们的作用只能在缺乏ClpX的情况下才能看到。我们发现,在大肠杆菌中,许多蛋白质的过度表达会导致多种形式的带有ssra标签的蛋白质的显著产生。这些蛋白质大多被ClpXP降解,但当ClpXP活性受损时,它们可以积累到显著水平。在我们旨在获得ClpA六聚体晶体结构的项目中,我们产生了在六聚体中预期的亚基接触点引入半胱氨酸残基的ClpA突变体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL MAURIZI其他文献

MICHAEL MAURIZI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL MAURIZI', 18)}}的其他基金

The ClpP protease as a therapeutic target in bacterial and mammalian cells
ClpP 蛋白酶作为细菌和哺乳动物细胞的治疗靶点
  • 批准号:
    8938126
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    7592538
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent Protein Degradation
能量依赖性蛋白质降解的生物化学
  • 批准号:
    6558935
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    6433041
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    8937640
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    8762996
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
The ClpP protease as a therapeutic target in bacterial and mammalian cells
ClpP 蛋白酶作为细菌和哺乳动物细胞的治疗靶点
  • 批准号:
    8763529
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    8157185
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
The ClpP protease as a therapeutic target in bacterial and mammalian cells
ClpP 蛋白酶作为细菌和哺乳动物细胞的治疗靶点
  • 批准号:
    8553191
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein
能量依赖性(细胞内)蛋白质的生物化学
  • 批准号:
    7038580
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    7592538
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    3774309
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    3752024
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent Protein Degradation
能量依赖性蛋白质降解的生物化学
  • 批准号:
    6558935
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    6433041
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    8937640
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    8762996
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein Degradation
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    8157185
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Biochemistry of Energy-Dependent (Intracellular) Protein
能量依赖性(细胞内)蛋白质的生物化学
  • 批准号:
    7038580
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    3813346
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了