BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION

能量依赖性(细胞内)蛋白质降解的生物化学

基本信息

项目摘要

ATP-dependent proteases play critical roles in the post-translational regulation of the amounts and activities of important cellular proteins and in the removal of damaged and denatured proteins from the cell. Our research has focussed on the biochemical characterization of the ATP- dependent Clp and Lon proteases from E. coli and on the discovery of new ATP-dependent proteases. Site-directed mutagenesis of the two ATPase sites in ClpA demonstrated that the active form of ClpA is a hexamer and that interactions between the subunits affect the ATPase and protease- activating activity of ClpA. The domain I site was shown to be involved in assembly of the ClpA hexamer, and interaction with ClpP and the domain II site was needed for activation of the proteolytic activity ClpP against large proteins. Model peptide substrates have been synthesized and shown to be cleaved more rapidly than any previous substrates. These peptides interacted tightly with ClpA and activated its ATPase activity. The site on ClpA occupied by the peptides defines the allosteric site for proteins on the enzyme, and occupancy of this site appears to be necessary to open the active site of ClpP for large polypeptides and to accelerate the catalytic cleavage of peptide bonds. Using partially inactivated ClpP, it was demonstrated that processive cleavage of polypeptides and proteins required the array of active sites present in the dodecameric form of ClpP. Processive cleavage of model peptides was observed when non- hydrolyzable analogs of ATP were used to activate the enzyme, indicating that ATP hydrolysis does not play a direct role in processivity. Studies done in collaboration with Dr. Susan Gottesman have demonstrated that another ATPase from E. coli, ClpX, is evolutionarily related to ClpA and that this protein functions in vivo with ClpP as an essential component of a proteolytic system that degrades the highly unstable lambda O protein. Sequence and biochemical data now indicate the presence in E. coli of four ATPases, Clps A, B, X and Y and suggest that the energy-dependent proteolytic systems of even this simple organism are highly complex. In studies done in collaboration with Drs. Michael Gottesman and Nan Wang, it has been found that a close homolog of the ATP-dependent Lon protease occurs in human mitochondria. Further biochemical and immunochemical studies are underway to identify the properties and function of this protease in human cells.
依赖于ATP的蛋白水解酶在翻译后中起关键作用 对重要细胞蛋白的数量和活性的调节 以及从细胞中去除受损和变性的蛋白质。我们的 研究的重点是三磷酸腺苷的生化特性- 大肠杆菌依赖的CLP和Lon蛋白水解酶及其新的发现 依赖于ATP的蛋白水解酶。两个ATPase位点的定点突变 在ClpA中证明了ClpA的活性形式是六角体,并且 亚基之间的相互作用影响ATPase和蛋白酶- 激活ClpA的活性。域I站点被显示参与了 组装ClpA六聚体,并与ClpP和结构域II相互作用 ClpP蛋白水解酶活性的激活需要结合位点 大的蛋白质。合成了模拟多肽底物,并展示了 比任何以前的底物都要快地被切割。这些多肽 与ClpA紧密结合,激活其ATPase活性。该网站 多肽占据的ClpA决定了蛋白质的变构位置 在酶上,而占用这个站点似乎是必要的 ClpP对大分子多肽的活性部位和促进 多肽键的催化断裂。使用部分失活的ClpP,它 证明了多肽和蛋白质的连续裂解 所需的以十二进制形式存在的活动位置数组 ClpP。观察到模型多肽在非 ATP的可水解物被用来激活酶,表明 三磷酸腺苷的水解并不直接影响蛋白质的加工性。研究 与苏珊·戈特斯曼博士合作完成的研究证明了 来自大肠杆菌的另一种ATPase ClpX在进化上与ClpA和 这种蛋白质在体内发挥作用,而ClpP是 一种能降解高度不稳定的lambda O蛋白的蛋白分解系统。 序列和生化数据现在表明,在大肠杆菌中存在四种 ATPase、CLP A、B、X和Y,并提示能量依赖 即使是这种简单的有机体的蛋白质分解系统也是非常复杂的。在……里面 与Michael Gottesman博士和Nan Wang博士合作进行的研究,它 已发现依赖于ATP的Lon蛋白水解酶的一种近似物 发生在人类线粒体中。进一步的生化和免疫化学 目前正在进行研究,以确定该酶的性质和功能 人体细胞中的蛋白酶。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

M R MAURIZI其他文献

M R MAURIZI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('M R MAURIZI', 18)}}的其他基金

BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    3752024
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    3813346
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    5200937
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    6100828
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY-DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    3796453
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    6160928
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
BIOCHEMISTRY OF ENERGY DEPENDENT (INTRACELLULAR) PROTEIN DEGRADATION
能量依赖性(细胞内)蛋白质降解的生物化学
  • 批准号:
    2463651
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了