Dynamic Analysis of Neural Plasticity in the Hippocampal Circuit
海马回路神经可塑性的动态分析
基本信息
- 批准号:7248292
- 负责人:
- 金额:$ 32.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAnimalsAreaBehavioralCellsChildCodeCognitiveComplexDepthDiseaseEnvironmentEpilepsyEventEvolutionFunctional disorderFutureGoalsHippocampal FormationHippocampus (Brain)HumanImpairmentIndividualLearningLocationMemoryModelingMovementNatureNeuronal PlasticityNeuronsOutputPatternPhasePlayPositioning AttributeProcessPsyche structureRiskRodentRoleRunningSchizophreniaShorthandSiteSpeedStagingStructureTechniquesTestingTheta RhythmTimeWorkbasedentate gyrusentorhinal cortexnovelrelating to nervous systemresponse
项目摘要
DESCRIPTION (provided by applicant): The hippocampal formation is essential for the storage of certain types of memories, including memories for facts and events in humans and memories for space in rodents. Understanding the role of the hippocampus in learning is a complex problem, in part because the hippocampus is not a single region but is instead made of up several areas, including the entorhinal cortex (EC), dentate gyrus (DG), CA3, CA1 and the subiculum, each of which may play a unique role in this process. In addition, learning is itself a complex phenomenon involving multiple behavioral and cognitive components. The challenge, then, is to go beyond the shorthand of discussing the hippocampus and learning and instead begin to examine the role of each area within the hippocampal circuit in the learning and representation of complex tasks. For spatial tasks we must recognize that there are multiple components to learning, including learning about the specific spatial locations as well as learning about the structure of the cognitive task. Learning about space and learning about task could occur in the same regions, or could occur at very different sites in the circuit. One of our major goals is to explore the neural bases of both spatial and task-related learning. We will use behavioral, electrophysiological and advanced analytical techniques to identify the nature of spatial and task-related neural activity and plasticity across the hippocampal circuit. The Specific Aims of this proposal are 1) To test the hypothesis that during learning, plasticity in the hippocampal formation changes the place and theta related responses of hippocampal neurons, 2) To test the hypothesis that each region within the hippocampal formation shows a distinct pattern of neural dynamics associated with the formation of new spatial representations, 3) To test the hypothesis that each region within the hippocampal formation shows a distinct pattern of neural dynamics associated with the encoding of task related information. Our overarching hypothesis is that the formation of new representations in the hippocampus is an incremental process, where representations are quickly established in the input and output regions and then elaborated as a result of processing within the circuit. This work will go beyond previous studies to examine the neural dynamics that underlie learning about new places and new tasks. Understanding how the hippocampus participates in learning may help us develop new strategies for treating people with mental impairments related to hippocampal dysfunction, including individuals suffering from schizophrenia as well as children and adults with learning impairments. The study of plasticity in the hippocampal circuit may also help us understand disorders related to abnormal plasticity such as epilepsy.
描述(由申请人提供):海马结构对于存储某些类型的记忆至关重要,包括人类对事实和事件的记忆以及啮齿动物对空间的记忆。理解海马体在学习中的作用是一个复杂的问题,部分原因是海马体不是一个单一的区域,而是由几个区域组成,包括内嗅皮层(EC),齿状回(DG),CA3,CA1和下托,每个区域都可能在这个过程中发挥独特的作用。此外,学习本身是一种复杂的现象,涉及多种行为和认知成分。因此,我们面临的挑战是超越讨论海马体和学习的速记,而是开始检查海马体回路中每个区域在学习和复杂任务表征中的作用。对于空间任务,我们必须认识到学习有多个组成部分,包括学习特定的空间位置以及学习认知任务的结构。学习空间和学习任务可能发生在相同的区域,也可能发生在回路中非常不同的部位。我们的主要目标之一是探索空间和任务相关学习的神经基础。我们将使用行为,电生理和先进的分析技术,以确定整个海马回路的空间和任务相关的神经活动和可塑性的性质。本提案的具体目的是:1)为了检验以下假设:在学习期间,海马结构中的可塑性改变海马神经元的位置和θ相关反应,2)为了检验以下假设:海马结构内的每个区域显示与新空间表征的形成相关的神经动力学的不同模式,3)验证海马结构内的每个区域显示与任务相关信息的编码相关的不同的神经动力学模式的假设。我们的总体假设是,海马体中新表征的形成是一个渐进的过程,在输入和输出区域中快速建立表征,然后作为回路内处理的结果进行阐述。这项工作将超越之前的研究,研究学习新地方和新任务的神经动力学。了解海马体如何参与学习可能有助于我们开发新的策略来治疗与海马体功能障碍相关的精神障碍患者,包括患有精神分裂症的个体以及患有学习障碍的儿童和成人。对海马回路可塑性的研究也可能有助于我们理解与异常可塑性相关的疾病,如癫痫。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loren M Frank其他文献
Decoding position from multiunit activity using a marked point process filter
- DOI:
10.1186/1471-2202-16-s1-p66 - 发表时间:
2015-12-18 - 期刊:
- 影响因子:2.300
- 作者:
Xinyi Deng;Daniel F Liu;Kenneth Kay;Loren M Frank;Uri T Eden - 通讯作者:
Uri T Eden
Loren M Frank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loren M Frank', 18)}}的其他基金
Commercialization of integrated electrode-electronics system for large scale, long-lasting electrophysiology
用于大规模、持久电生理学的集成电极电子系统的商业化
- 批准号:
10651898 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Commercialization of integrated electrode-electronics system for large scale, long-lasting electrophysiology
用于大规模、持久电生理学的集成电极电子系统的商业化
- 批准号:
10481712 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Diversity Administrative Supplement to Maximizing Flexibility: Optimized Neural Probes and Electronics for Long Term, High Bandwidth Recordings
最大限度地提高灵活性的多样性管理补充:优化的神经探针和电子设备,用于长期、高带宽记录
- 批准号:
10307662 - 财政年份:2021
- 资助金额:
$ 32.3万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10689321 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10687537 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10472268 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10893840 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10893838 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10241922 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Maximizing flexibility: Optimized neural probes and electronics for long term, high bandwidth recordings
最大限度地提高灵活性:优化的神经探针和电子设备可实现长期、高带宽记录
- 批准号:
10473539 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 32.3万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 32.3万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 32.3万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 32.3万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 32.3万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 32.3万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 32.3万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 32.3万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 32.3万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 32.3万 - 项目类别:
Discovery Projects














{{item.name}}会员




