Computational Statistic Approaches to Gene-Environment Interaction
基因-环境相互作用的计算统计方法
基本信息
- 批准号:7348103
- 负责人:
- 金额:$ 37.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-21 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAlcohol abuseAlgorithmsArchitectureAsthmaBiologicalBipolar DisorderCandidate Disease GeneChromosome MappingClinicalCluster AnalysisComplexComputer softwareDataData SetDevelopmentDiabetes MellitusDiagnosisDiseaseDocumentationEnsureEnvironmentEnvironmental Risk FactorEventExposure toFamilyFibrinogenFundingGene FrequencyGenesGeneticGenetic HeterogeneityGenetic ModelsGenetic RiskGenomeGenome ScanGenotypeGeographic LocationsGrantHaplotypesHeterogeneityIndividualLeadLinkLinkage DisequilibriumMalignant NeoplasmsMapsMarkov ChainsMaximum Likelihood EstimateMental DepressionMental disordersMethodsModelingMonte Carlo MethodMutationNational Institute of Mental HealthNon-Insulin-Dependent Diabetes MellitusNumbersPathway interactionsPatternPerformancePhenotypePlayPopulationPopulation GeneticsPredispositionProbabilityRelative RisksResearch DesignResearch PersonnelRiskRisk FactorsRoleSamplingScanningScientific Advances and AccomplishmentsSignal TransductionSimulateStatistical MethodsTestingThinkingVariantabstractingbasecase controldesigndisorder riskexperiencegene environment interactiongenetic associationgenetic variantgenome wide association studyhuman diseaseimprovedinnovationinsightinterestmethod developmentprogramsresponsesexsimulationsizestatisticstheoriestooltraittransmission process
项目摘要
DESCRIPTION (provided by applicant):
Complex disorders such as depression, type 2 diabetes and asthma are caused jointly by genetic and environmental risk factors. Understanding these risk factors will improve diagnosis and treatment for many such disorders. Recent results suggest that genes and environment often interact in a nonlinear manner; genetic risk variants may increase the vulnerability to or adverse consequences of exposure, but have no direct effect on disease risk on their own. Under this model, including environmental covariates can increase the power of a genome scan considerably. However, studies of genetic association have been hampered by the lack of methods to assess gene-environment interaction. Due to the large number of hypotheses possible, we feel that detailed definitions of phenotypes and precise modeling of genetic architecture are required to design powerful studies. We propose to develop statistical methods to estimate gene-environment interaction both from family data and from samples of unrelated individuals in a genome-wide association (GWA) study. To this end, we have assembled an interactive and innovative team with a proven track record in the development of methods for the analysis of gene-mapping data. Our approach is based on mapping risk variants for common complex disorders by combining information of multiple tightly linked markers and environmental covariates. Furthermore we propose algorithms and simulation tools to estimate the strength of gene-environment interaction and to plan replication studies. All the tools and methods we develop will be incorporated into publicly available software. We have access to genotype and phenotype data from the NIMH bipolar genetics initiative. We intend to use this dataset as well as simulated datasets and other GWA datasets to evaluate and calibrate our methods for estimating genotype-phenotype interaction and for planning replication studies. (End of Abstract)
描述(由申请人提供):
抑郁症、2型糖尿病和哮喘等复杂疾病是由遗传和环境风险因素共同引起的。了解这些危险因素将改善许多此类疾病的诊断和治疗。最近的研究结果表明,基因和环境往往以一种非线性的方式相互作用;遗传风险变异可能会增加暴露的易感性或不良后果,但本身对疾病风险没有直接影响。在这个模型下,包括环境协变量可以显著提高基因组扫描的能力。然而,由于缺乏评估基因-环境相互作用的方法,对遗传关联的研究一直受到阻碍。由于可能有大量的假设,我们认为需要对表型的详细定义和对遗传结构的精确建模来设计强有力的研究。在全基因组关联(GWA)研究中,我们建议开发统计方法,从家庭数据和无关个体的样本中估计基因与环境的相互作用。为此,我们组建了一个互动和创新的团队,在基因图谱数据分析方法的开发方面有着良好的记录。我们的方法是通过结合多个紧密连锁的标记物和环境协变量的信息来定位常见复杂疾病的风险变量。此外,我们还提出了算法和模拟工具来估计基因-环境相互作用的强度,并计划重复研究。我们开发的所有工具和方法都将被整合到公开可用的软件中。我们获得了来自NIMH双极遗传学计划的基因和表型数据。我们打算使用这个数据集以及模拟数据集和其他GWA数据集来评估和校准我们的方法,以估计基因-表型相互作用和规划复制研究。(摘要结束)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Zoellner其他文献
Sebastian Zoellner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian Zoellner', 18)}}的其他基金
Leveraging long-range haplotypes in sequencing data to advance large scale genetic studies
利用测序数据中的远程单倍型推进大规模遗传学研究
- 批准号:
10477336 - 财政年份:2020
- 资助金额:
$ 37.22万 - 项目类别:
Leveraging long-range haplotypes in sequencing data to advance large scale genetic studies
利用测序数据中的远程单倍型推进大规模遗传学研究
- 批准号:
10251017 - 财政年份:2020
- 资助金额:
$ 37.22万 - 项目类别:
Leveraging long-range haplotypes in sequencing data to advance large scale genetic studies
利用测序数据中的远程单倍型推进大规模遗传学研究
- 批准号:
10653188 - 财政年份:2020
- 资助金额:
$ 37.22万 - 项目类别:
Computational Statistic Approaches to Gene-Environment Interaction
基因-环境相互作用的计算统计方法
- 批准号:
7666932 - 财政年份:2007
- 资助金额:
$ 37.22万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 37.22万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 37.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




