Efficient Analysis of SNPs & Haplotypes with Applications in Gene Mapping

SNP 的高效分析

基本信息

  • 批准号:
    7209009
  • 负责人:
  • 金额:
    $ 39.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-15 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall objective is to develop efficient algorithms and software tools for the analysis of genetic variation in human populations and its association with phenotypic variation. Correlating variations in DMA sequences with phenotypic differences has been one of the grand challenges in biomedical research. With the completion of the human genome project, substantial effort has been made to identify all common genetic variations such as single nucleotide polymorphisms (SNPs). While millions of SNPs have been identified, there is a great need for models and tools to characterize genetic variation in humans, and to facilitate the localization of genes underling complex diseases/traits. To meet the need, we propose to develop novel algorithmic approaches and software tools to address some of the fundamental issues in the analysis of SNPs and haplotypes with applications in gene association mapping. More specifically, we propose to devise efficient and robust algorithms to infer haplotypes from genotypes on a pedigree, impute missing SNPs, discover the haplotype structure, and select informative (tag) SNPs. We will also develop computational models that could utilize haplotypes in the identification of disease genes. The focus of this proposal is the development of novel combinatorial algorithms, datamining approaches, statistical techniques, as well as robust and user friendly tools. The emphasis is on the efficiency of algorithms because existing methods could not handle data sets at the whole genome level. The algorithms will be performed on the public databases (e.g. the HapMap project), as well as other human data generated in our collaborators' ongoing projects, including data sets concerning various complications of pregnancy, modifier genes of the cystic fibrosis disease and the genetic effects of late-onset Alzheimer disease. We anticipate that this project will result in a full spectrum of efficient and effective algorithms and software tools that will be useful to the broad biomedical research community and will greatly facilitate the study of human genetic variation and its association with complex diseases/traits. The proposed project fits well in two of the three themes that NIH has identified in its Roadmap initiatives: research in bioinformatics and computational biology under the theme of New Pathways to Discovery and interdisciplinary research under the theme of Research Teams of the Future.
描述(由申请人提供): 总体目标是开发有效的算法和软件工具,用于分析人群中的遗传变异及其与表型变异的关系。将DNA序列的变异与表型差异相关联一直是生物医学研究中的重大挑战之一。随着人类基因组计划的完成,已经做出了大量努力来鉴定所有常见的遗传变异,例如单核苷酸多态性(SNP)。虽然已经鉴定了数百万个SNP,但非常需要模型和工具来表征人类的遗传变异,并促进复杂疾病/性状基因的定位。为了满足这一需求,我们建议开发新的算法方法和软件工具,以解决一些基本问题的SNP和单体型分析与基因关联映射的应用。更具体地说,我们建议设计高效和强大的算法来推断单倍型从基因型的系谱,估算缺失的SNP,发现单倍型结构,并选择信息(标签)SNP。我们还将开发计算模型,可以利用单倍型在疾病基因的识别。这项建议的重点是开发新的组合算法,数据挖掘方法,统计技术,以及强大的和用户友好的工具。重点是算法的效率,因为现有的方法不能处理整个基因组水平的数据集。这些算法将在公共数据库(例如HapMap项目)以及我们的合作者正在进行的研究中产生的其他人类数据上进行。 这些项目包括关于各种妊娠并发症、囊性纤维化疾病的修饰基因和迟发性阿尔茨海默病的遗传影响的数据集。我们预计,该项目将产生一个全方位的高效和有效的算法和软件工具,这将是有用的广泛的生物医学研究界,并将大大促进人类遗传变异及其与复杂疾病/性状的关联的研究。拟议的项目非常适合NIH在其路线图倡议中确定的三个主题中的两个主题:以发现新途径为主题的生物信息学和计算生物学研究以及以未来研究团队为主题的跨学科研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Li其他文献

Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units
新型两级集热器和蓄热装置低温太阳能热电系统的设计与分析
  • DOI:
    10.1016/j.renene.2011.02.008
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Gang Pei;Jing Li;Jie Ji
  • 通讯作者:
    Jie Ji

Jing Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Li', 18)}}的其他基金

AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
  • 批准号:
    10383494
  • 财政年份:
    2022
  • 资助金额:
    $ 39.39万
  • 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
  • 批准号:
    10674753
  • 财政年份:
    2021
  • 资助金额:
    $ 39.39万
  • 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
  • 批准号:
    10459595
  • 财政年份:
    2021
  • 资助金额:
    $ 39.39万
  • 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
  • 批准号:
    10298016
  • 财政年份:
    2021
  • 资助金额:
    $ 39.39万
  • 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
  • 批准号:
    10172824
  • 财政年份:
    2020
  • 资助金额:
    $ 39.39万
  • 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
  • 批准号:
    10677882
  • 财政年份:
    2020
  • 资助金额:
    $ 39.39万
  • 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
  • 批准号:
    10408777
  • 财政年份:
    2020
  • 资助金额:
    $ 39.39万
  • 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
  • 批准号:
    10690298
  • 财政年份:
    2020
  • 资助金额:
    $ 39.39万
  • 项目类别:
Impact of the Physician Payments Sunshine Act on Prescription Drug Utilization and Spending
医生支付阳光法案对处方药使用和支出的影响
  • 批准号:
    9807060
  • 财政年份:
    2019
  • 资助金额:
    $ 39.39万
  • 项目类别:
Project MISSION: Developing a multicomponent, Multilevel Implementation Strategy for Syncope OptImalCare thrOugh eNgagement
项目使命:通过参与制定晕厥优化护理的多组成部分、多层次实施策略
  • 批准号:
    9755244
  • 财政年份:
    2018
  • 资助金额:
    $ 39.39万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.39万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了