An Automated System to Monitor Medical Device Safety
监控医疗器械安全的自动化系统
基本信息
- 批准号:7291565
- 负责人:
- 金额:$ 42.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-30 至 2010-09-29
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAlgorithmsBlood VesselsCardiacCardiologyClassClinicalClosureCodsCommunity HospitalsComplexConsensusCoronaryDataData CollectionData SetDatabasesDetectionDevicesDisease regressionEarly DiagnosisEarly identificationEffectivenessEnrollmentEnvironmentEventFailureFrequenciesFundingGeneral HospitalsHospitalsInformation SystemsInstitutionInterventionLogistic RegressionsMassachusettsMedical DeviceMedical Device SafetyMedical SurveillanceMedical TechnologyMedical centerMethodologyMethodsModelingMonitorOperative Surgical ProceduresOutcomeOutputPatientsPharmaceutical PreparationsPhasePoliciesProceduresPublic HealthRandomizedRandomized Controlled Clinical TrialsRandomized Controlled TrialsRangeRateRegistriesRelative (related person)ReportingResearchResearch PersonnelRisk AdjustmentSafetySavingsSecureSensitivity and SpecificityStandards of Weights and MeasuresStatistical MethodsStentsSystemSystems AnalysisTeaching HospitalsTechnologyTestingTimeUnited States National Library of MedicineUpdateWomancomputerized toolscoronary angioplastycost effectivenessexperiencefollow-upmortalitypost-marketprogramstooltrend
项目摘要
DESCRIPTION (provided by applicant):
Post-market safety surveillance of medical devices is a complex task compounded by rapid dissemination of new medical technology, lack of standards in data collection, and inadequate passive adverse event reporting mechanisms. Building an effective surveillance system is challenging because data are generally not available in an acceptable timeframe and there is lack of consensus regarding the most appropriate methodologies to be used to identify low frequency safety threats. We have developed a computerized tool, DELTA (Data Extraction and Longitudinal Time Analysis system), that can monitor the adverse event rates of new medical devices through the continuous surveillance of clinical outcomes databases using a variety of statistical monitoring tools. We tested and validated DELTA on a large clinical database at a single center within the domain of interventional cardiology and showed that the system was efficient in identifying very low frequency events. In addition we have explored various alerting algorithms triggered by event trends.
We propose to extend the DELTA surveillance system to monitor a Massachusetts state-wide mandated outcomes data registry in interventional cardiology that is rigorously collected according to national standards. The DELTA system will be modified to support continuous monitoring utilizing dichotomous and continuous outcome analytic methods. In addition, the system will be validated against historical registry data as well as randomized trial data in which there were significant safety issues identified. Also, we propose to implement DELTA as a secure distributed network of analytic engines at four participating centers in MA. We will "de-identify" patient information using algorithms that quantify the degree of "anonymity" of the disclosed data. This system will be evaluated and compared with traditional methods for adverse event detection by assessing the safety of several classes of new devices, including new drug eluting coronary stents, embolic protection devices, and vascular closure devices in over 40,000 patients. The sensitivity, specificity, time savings and cost effectiveness of the DELTA network will be prospectively evaluated.
The DELTA network may offer a valuable complementary approach to existing methods for medical device safety surveillance. This approach can be readily extended to monitor the safety of technologies outside of interventional cardiology as outcomes data repositories become available.
描述(由申请人提供):
医疗器械上市后的安全监测是一项复杂的任务,加上新医疗技术的迅速传播、数据收集缺乏标准以及被动不良事件报告机制不足。建立有效的监测系统具有挑战性,因为数据通常不能在可接受的时间范围内获得,而且对于用来确定低频安全威胁的最适当的方法缺乏共识。我们开发了一个计算机化的工具,Delta(数据提取和纵向时间分析系统),它可以通过使用各种统计监测工具对临床结果数据库进行持续监测,来监测新医疗设备的不良事件发生率。我们在介入心脏病学领域内的一个单一中心的大型临床数据库上测试和验证了Delta,并表明该系统在识别极低频率事件方面是有效的。此外,我们还探索了由事件趋势触发的各种警报算法。
我们建议扩展Delta监测系统,以监测马萨诸塞州范围内的介入心脏病学强制结果数据登记,该登记是根据国家标准严格收集的。将对Delta系统进行改进,以支持利用二分法和连续成果分析方法进行持续监测。此外,将对照登记册的历史数据以及发现重大安全问题的随机试验数据对该系统进行验证。此外,我们建议在MA的四个参与中心将Delta实施为分析引擎的安全分布式网络。我们将使用量化已披露数据的“匿名性”程度的算法来“识别”患者信息。该系统将通过评估几类新设备的安全性进行评估,并与传统的不良事件检测方法进行比较,这些新设备包括新药洗脱冠状动脉支架、血栓保护设备和血管闭合设备,涉及4万多名患者。将对Delta网络的敏感性、特异性、节省时间和成本效益进行前瞻性评估。
Delta网络可能为现有的医疗器械安全监测方法提供一种有价值的补充方法。随着结果数据库的出现,这种方法可以很容易地扩展到监测介入心脏病学以外的技术的安全性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDERIC S RESNIC其他文献
FREDERIC S RESNIC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDERIC S RESNIC', 18)}}的其他基金
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
8733061 - 财政年份:2013
- 资助金额:
$ 42.36万 - 项目类别:
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
8696564 - 财政年份:2013
- 资助金额:
$ 42.36万 - 项目类别:
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
9143573 - 财政年份:2013
- 资助金额:
$ 42.36万 - 项目类别:
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
8921833 - 财政年份:2013
- 资助金额:
$ 42.36万 - 项目类别:
A System to Monitor Safety in Interventional Cardiology
介入心脏病学安全监测系统
- 批准号:
6805728 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
An Automated System to Monitor Medical Device Safety
监控医疗器械安全的自动化系统
- 批准号:
7683291 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
A System to Monitor Safety in Interventional Cardiology
介入心脏病学安全监测系统
- 批准号:
6719166 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
An Automated System to Monitor Medical Device Safety
监控医疗器械安全的自动化系统
- 批准号:
7146511 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
A System to Monitor Safety in Interventional Cardiology
介入心脏病学安全监测系统
- 批准号:
6927232 - 财政年份:2003
- 资助金额:
$ 42.36万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Research Grant