An Automated System to Monitor Medical Device Safety
监控医疗器械安全的自动化系统
基本信息
- 批准号:7683291
- 负责人:
- 金额:$ 42.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-30 至 2011-09-29
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAlgorithmsBlood VesselsCardiacCardiologyClinicalCodsCommunity HospitalsComplexConsensusCoronaryDataData CollectionData SetDatabasesDetectionDevicesEarly DiagnosisEarly identificationEffectivenessEnrollmentEnvironmentEventFailureFrequenciesFundingGeneral HospitalsHospitalsInformation SystemsInstitutionInterventionLogistic RegressionsMassachusettsMedical DeviceMedical Device SafetyMedical TechnologyMedical centerMethodologyMethodsModelingMonitorOperative Surgical ProceduresOutcomeOutputPatientsPharmaceutical PreparationsPhasePoliciesProceduresPublic HealthRandomizedRandomized Controlled Clinical TrialsRandomized Controlled TrialsRegistriesRelative (related person)ReportingResearchResearch PersonnelRisk AdjustmentSafetySavingsSecureSensitivity and SpecificityStatistical MethodsStentsSystemSystems AnalysisTeaching HospitalsTechnologyTestingTimeUnited States National Library of MedicineUpdateWomancomputerized toolscoronary angioplastycost effectivenessexperiencefollow-upmeetingsmortalitypost-marketprogramssurveillance networktooltrend
项目摘要
DESCRIPTION (provided by applicant):
Post-market safety surveillance of medical devices is a complex task compounded by rapid dissemination of new medical technology, lack of standards in data collection, and inadequate passive adverse event reporting mechanisms. Building an effective surveillance system is challenging because data are generally not available in an acceptable timeframe and there is lack of consensus regarding the most appropriate methodologies to be used to identify low frequency safety threats. We have developed a computerized tool, DELTA (Data Extraction and Longitudinal Time Analysis system), that can monitor the adverse event rates of new medical devices through the continuous surveillance of clinical outcomes databases using a variety of statistical monitoring tools. We tested and validated DELTA on a large clinical database at a single center within the domain of interventional cardiology and showed that the system was efficient in identifying very low frequency events. In addition we have explored various alerting algorithms triggered by event trends.
We propose to extend the DELTA surveillance system to monitor a Massachusetts state-wide mandated outcomes data registry in interventional cardiology that is rigorously collected according to national standards. The DELTA system will be modified to support continuous monitoring utilizing dichotomous and continuous outcome analytic methods. In addition, the system will be validated against historical registry data as well as randomized trial data in which there were significant safety issues identified. Also, we propose to implement DELTA as a secure distributed network of analytic engines at four participating centers in MA. We will "de-identify" patient information using algorithms that quantify the degree of "anonymity" of the disclosed data. This system will be evaluated and compared with traditional methods for adverse event detection by assessing the safety of several classes of new devices, including new drug eluting coronary stents, embolic protection devices, and vascular closure devices in over 40,000 patients. The sensitivity, specificity, time savings and cost effectiveness of the DELTA network will be prospectively evaluated.
The DELTA network may offer a valuable complementary approach to existing methods for medical device safety surveillance. This approach can be readily extended to monitor the safety of technologies outside of interventional cardiology as outcomes data repositories become available.
描述(由申请人提供):
医疗器械上市后安全监测是一项复杂的任务,新医疗技术的快速传播、数据收集缺乏标准以及被动不良事件报告机制不足使其更加复杂。建立一个有效的监测系统是具有挑战性的,因为数据通常无法在可接受的时间范围内获得,并且对于用于识别低频安全威胁的最适当方法缺乏共识。我们开发了一种计算机化工具DELTA(数据提取和纵向时间分析系统),可以通过使用各种统计监测工具对临床结局数据库进行持续监测来监测新医疗器械的不良事件发生率。我们在介入心脏病学领域内的单个中心的大型临床数据库上测试和验证了DELTA,并表明该系统在识别极低频事件方面是有效的。此外,我们还探索了由事件趋势触发的各种警报算法。
我们建议扩展DELTA监测系统,以监测马萨诸塞州全州范围内根据国家标准严格收集的介入心脏病学强制结局数据登记。DELTA系统将进行修改,以支持使用二分法和连续结果分析方法进行连续监测。此外,将根据历史登记数据以及随机试验数据(其中发现了重大安全性问题)对该系统进行验证。此外,我们建议在MA的四个参与中心实施DELTA作为一个安全的分布式网络分析引擎。我们将使用量化所披露数据的“匿名性”程度的算法来“去识别”患者信息。将通过评估几类新器械的安全性,对该系统进行评价,并与传统的不良事件检测方法进行比较,这些新器械包括新型药物洗脱冠状动脉支架、栓塞保护装置和血管闭合装置,用于超过40,000例患者。将对DELTA网络的灵敏度、特异性、节省时间和成本效益进行前瞻性评价。
DELTA网络可以为现有的医疗器械安全监督方法提供有价值的补充方法。随着结局数据库的可用,这种方法可以很容易地扩展到监测介入心脏病学以外技术的安全性。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-term clinical outcomes after drug-eluting and bare-metal stenting in Massachusetts.
- DOI:10.1161/circulationaha.108.781377
- 发表时间:2008-10-28
- 期刊:
- 影响因子:37.8
- 作者:Mauri L;Silbaugh TS;Wolf RE;Zelevinsky K;Lovett A;Zhou Z;Resnic FS;Normand SL
- 通讯作者:Normand SL
Efficacy and safety of the nitinol clip-based vascular closure device (Starclose) for closure of common femoral arterial cannulation at or near the bifurcation: a propensity score-adjusted analysis.
基于镍钛诺夹的血管闭合装置(Starclose)用于闭合分叉处或附近股总动脉插管的功效和安全性:倾向评分调整分析。
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Bangalore,Sripal;Vidi,VenkatesanD;Liu,ChristopherB;Shah,PinakB;Resnic,FredericS
- 通讯作者:Resnic,FredericS
Quantitative impact of cardiovascular risk factors and vascular closure devices on the femoral artery after repeat cardiac catheterization.
重复心导管检查后心血管危险因素和血管闭合装置对股动脉的定量影响。
- DOI:10.1016/j.ahj.2009.10.023
- 发表时间:2010
- 期刊:
- 影响因子:4.8
- 作者:Tiroch,KlausA;Matheny,MichaelE;Resnic,FredericS
- 通讯作者:Resnic,FredericS
Rare adverse event monitoring of medical devices with the use of an automated surveillance tool.
使用自动监测工具对医疗器械的罕见不良事件进行监测。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Matheny,MichaelE;Arora,Nipun;Ohno-Machado,Lucila;Resnic,FredericS
- 通讯作者:Resnic,FredericS
Survival analysis of hierarchical learning curves in assessment of cardiac device and procedural safety.
心脏装置和手术安全评估中分层学习曲线的生存分析。
- DOI:10.1002/sim.7906
- 发表时间:2018
- 期刊:
- 影响因子:2
- 作者:Govindarajulu,Usha;Bedi,Sandeep;Kluger,Aaron;Resnic,Frederic
- 通讯作者:Resnic,Frederic
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDERIC S RESNIC其他文献
FREDERIC S RESNIC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDERIC S RESNIC', 18)}}的其他基金
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
8733061 - 财政年份:2013
- 资助金额:
$ 42.79万 - 项目类别:
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
8696564 - 财政年份:2013
- 资助金额:
$ 42.79万 - 项目类别:
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
9143573 - 财政年份:2013
- 资助金额:
$ 42.79万 - 项目类别:
Active Surveillance of Cardiovascular Devices: The Multi-Registry DELTA Network
心血管设备的主动监控:多注册 DELTA 网络
- 批准号:
8921833 - 财政年份:2013
- 资助金额:
$ 42.79万 - 项目类别:
A System to Monitor Safety in Interventional Cardiology
介入心脏病学安全监测系统
- 批准号:
6805728 - 财政年份:2003
- 资助金额:
$ 42.79万 - 项目类别:
An Automated System to Monitor Medical Device Safety
监控医疗器械安全的自动化系统
- 批准号:
7291565 - 财政年份:2003
- 资助金额:
$ 42.79万 - 项目类别:
A System to Monitor Safety in Interventional Cardiology
介入心脏病学安全监测系统
- 批准号:
6719166 - 财政年份:2003
- 资助金额:
$ 42.79万 - 项目类别:
An Automated System to Monitor Medical Device Safety
监控医疗器械安全的自动化系统
- 批准号:
7146511 - 财政年份:2003
- 资助金额:
$ 42.79万 - 项目类别:
A System to Monitor Safety in Interventional Cardiology
介入心脏病学安全监测系统
- 批准号:
6927232 - 财政年份:2003
- 资助金额:
$ 42.79万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 42.79万 - 项目类别:
Continuing Grant