Analysis of Multi-Voxel Patterns of Activity in fMRI data

fMRI 数据中多体素活动模式的分析

基本信息

  • 批准号:
    7480923
  • 负责人:
  • 金额:
    $ 31.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-18 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): fMRI experiments produce large, numerically rich, but noisy data sets that pose a challenge for extracting the signal variance and establishing the correspondence between that signal and cognitive variables. Conventional analysis has reduced the dimensionality of fMRI data by searching for clusters of voxels that show similar responses to experimental manipulations and averaging the signal within those clusters. We have introduced a new approach to fMRI data analysis, "multi-voxel pattern analysis", that examines higher spatial frequency patterns of activity - the voxel-by-voxel variation of response within a region - and have shown that this method greatly increases the sensitivity of fMRI (Haxby et al. 2001; Hanson et al. 2004; OToole et al. 2004; Polyn et al. 2004). In the proposed investigations, we will develop new methods for analysis of spatially-distributed patterns of neural activity in relation to two specific problems in fMRI data analysis: 1. accounting for inter-individual variation in functional neuroanatomy, and 2. the relation between spatially-distributed neural population responses and cognitive representations. This work will involve the efforts of a multidisciplinary team consisting of cognitive neuroscientists, applied mathematicians, and signal- processing engineers. We propose the development of analytic methods for aligning the functional neuroanatomy of individual brains based on the patterns of neural activity that are elicited by a broad spectrum of cognitive activities. We predict that these methods will enhance the sensitivity of group statistical tests of fMRI data, will allow the investigation of the inter-individual consistency of higher spatial frequency topographic representations, and will provide explicit measures of inter-individual variation in the location, organization, and spatial extent of functional maps, with potential applications for studies of clinical conditions. We propose, further, to develop methods for detecting and analyzing distributed patterns of neural activity that make use of prior knowledge about the structure of the cognitive representations that are associated with those neural activities. We predict that these methods will increase the sensitivity of multi-voxel pattern analysis and will allow the investigation of how cognitive information is represented in topographically-organized, spatially-distributed patterns of neural activity.
描述(由申请人提供):功能磁共振成像实验产生大量、数字丰富但有噪声的数据集,这对提取信号方差和建立信号与认知变量之间的对应关系提出了挑战。 传统分析通过搜索对实验操作表现出相似响应的体素簇并对这些簇内的信号进行平均来降低功能磁共振成像数据的维度。 我们引入了一种新的 fMRI 数据分析方法,即“多体素模式分析”,该方法检查较高的空间频率活动模式(区域内逐体素的响应变化),并表明该方法大大提高了 fMRI 的灵敏度(Haxby 等人,2001 年;Hanson 等人,2004 年;OToole 等人,2004 年;Polyn 等人,2004 年)。 在拟议的研究中,我们将开发新的方法来分析与功能磁共振成像数据分析中的两个具体问题相关的神经活动的空间分布模式:1.解释功能神经解剖学中的个体间差异,2.空间分布的神经群体反应和认知表征之间的关系。 这项工作将涉及由认知神经科学家、应用数学家和信号处理工程师组成的多学科团队的努力。 我们建议开发分析方法,根据广泛的认知活动引起的神经活动模式来调整个体大脑的功能神经解剖学。 我们预测这些方法将增强功能磁共振成像数据的群体统计测试的敏感性,将允许调查较高空间频率地形表示的个体间一致性,并将提供功能图的位置、组织和空间范围的个体间变化的明确测量,并具有临床条件研究的潜在应用。 我们进一步建议开发用于检测和分析分布式神经活动模式的方法,这些方法利用有关与这些神经活动相关的认知表征结构的先验知识。 我们预测这些方法将提高多体素模式分析的灵敏度,并将允许研究认知信息如何在拓扑组织、空间分布的神经活动模式中表示。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES V HAXBY其他文献

JAMES V HAXBY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES V HAXBY', 18)}}的其他基金

Proj 2: Decision Making and Control in Perception and Attention (p. 184 - 206)
项目 2:感知和注意力的决策和控制(第 184 - 206 页)
  • 批准号:
    7551670
  • 财政年份:
    2007
  • 资助金额:
    $ 31.93万
  • 项目类别:
Analysis of Multi-Voxel Patterns of Activity in fMRI data
fMRI 数据中多体素活动模式的分析
  • 批准号:
    7146469
  • 财政年份:
    2006
  • 资助金额:
    $ 31.93万
  • 项目类别:
Analysis of Multi-Voxel Patterns of Activity in fMRI data
fMRI 数据中多体素活动模式的分析
  • 批准号:
    7613805
  • 财政年份:
    2006
  • 资助金额:
    $ 31.93万
  • 项目类别:
Analysis of Multi-Voxel Patterns of Activity in fMRI data
fMRI 数据中多体素活动模式的分析
  • 批准号:
    7692174
  • 财政年份:
    2006
  • 资助金额:
    $ 31.93万
  • 项目类别:
Neural Predictors of Self-Regulation Failure and Success for Appetitive Behavior
食欲行为自我调节失败和成功的神经预测因素
  • 批准号:
    9249009
  • 财政年份:
    2006
  • 资助金额:
    $ 31.93万
  • 项目类别:
Analysis of Multi-Voxel Patterns of Activity in fMRI data
fMRI 数据中多体素活动模式的分析
  • 批准号:
    7846781
  • 财政年份:
    2006
  • 资助金额:
    $ 31.93万
  • 项目类别:
Proj 2: Decision Making and Control in Perception and Attention (p. 184 - 206)
项目 2:感知和注意力的决策和控制(第 184 - 206 页)
  • 批准号:
    7007186
  • 财政年份:
    2005
  • 资助金额:
    $ 31.93万
  • 项目类别:
Functional Anatomic Studies of Self-Affect: A Multimodal Approach
自我影响的功能解剖学研究:多模式方法
  • 批准号:
    9975226
  • 财政年份:
    2000
  • 资助金额:
    $ 31.93万
  • 项目类别:
Functional Anatomic Studies of Self-Affect: A Multimodal Approach
自我影响的功能解剖学研究:多模式方法
  • 批准号:
    9352869
  • 财政年份:
    2000
  • 资助金额:
    $ 31.93万
  • 项目类别:
Functional Anatomic Studies of Self-Affect: A Multimodal Approach
自我影响的功能解剖学研究:多模式方法
  • 批准号:
    9754243
  • 财政年份:
    2000
  • 资助金额:
    $ 31.93万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了