Statistical And Computational Methods For Molecular Biol
分子生物学的统计和计算方法
基本信息
- 批准号:7296867
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematical and statistical modeling techniques are relevant to biomedical investigations at a variety of scales and in a variety of contexts. Our Lab applies expertise in the mathematical, statistical and computing sciences to address novel problems arising in cutting edge areas of biomedical research.
In a joint study with investigators in Laboratory of Molecular Biology, NCI and Institut National de la Recherche Agronomique (INRA), France, we are attacking the problem of protein structure classification, with the goal of improving automated methods for recognition and classification of protein domains in three dimensional structures. Domains are thought to be the building blocks of complex structures, and often determine protein function. We have recently shown that two distinct structure similarity measures (VAST and SHEBA) can obtain at best about 75-80% agreement with a standard manually curated protein classification (SCOP), calling into question the existence of sharp boundaries between protein "folds". Currently, we are exploring hierarchical cluster analysis as a means of improving that agreement. A comparison of pairwise similarity measures with expert opinion showed that excellent agreement, yet classes defined by pairwise similarity differed significantly from generally accepted "fold" definitions.
With an investigator in the Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, and with another investigator from Imperial College, London, we have studied the physical topology of gene and chromosome placement in cell nuclei. This work requires careful statistical analysis on gene and chromosome placement data. We have shown that in mice, the gene MASH1, involved in early embryonic neurogenesis, is preferentially placed in the nuclear periphery in embryonic stem cells, but migrates towards the nuclear center after commitment to neural development. It was also shown that the physical change in location was coupled to changes in expression level and to changes in chromatin structure along a 2MB region of the genome centered about the MASH1 locus.
With an investigator from the Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, we continued our studies of the spatial organization of the genome. In 2006 we showed that in mouse cells, spatial correlations between chromosomes is not merely due to their radial placement. We are now investigating the effects of gene splicing on genetic disease, with particular emphasize on high through-put analysis of cell batches, which will be useful in finding drug targets.
With an investigator in the Division of International Epidemiology, Fogarty International Center, we have developed a phenomenological model of Plasmodium parasite/red blood cell dynamics, and have used it to examine the consequences of strategies of attack of the different Plasmodium species that attack humans. Currently, we are investigating consequences of dual P. vivax- P. falciparum infection. (PCR studies indicate that about 10% of all human malaria cases are dual P. vivax-P. falciparum infections.) Our studies indicate transients in red blood cell production induced in response to P. falciparum invasion of such cells can greatly boost the parasitemia of P. vivax, even inducing a cryptic infection into a more dangerous phase.
In a project with investigators of NIMH, we analyzed multiple-electrode recordings from in-vitro neural network preparations in order to deduce the underlying cortical network topology. We found that such functional networks show a strong "small world" property, meaning high clustering among the nodes and short node-to-node distances. More importantly, we found a novel property of these networks when the weights of the network links are taken into account. Simulations indicate that such network architecture can be obtained using special, time-delayed learning rules.
In a continuing project with investigators in the Laboratory of Integrative and Medical Biophysics, NICHD related to the development of diffusion tensor MRI, we developed methods for spectral decomposition of a 4th-order covariance tensor and showed how it can be applied to diffusion tensor MRI.
数学和统计建模技术与各种尺度和各种背景下的生物医学研究相关。我们的实验室运用数学、统计和计算科学方面的专业知识,解决生物医学研究前沿领域出现的新问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
peter j munson其他文献
peter j munson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('peter j munson', 18)}}的其他基金
Statistical And Computational Methods For Molecular Biology And Biomedicine
分子生物学和生物医学的统计和计算方法
- 批准号:
8565482 - 财政年份:
- 资助金额:
-- - 项目类别:
Statistical And Computational Methods For Gene Expression and Proteomic Analysis
基因表达和蛋白质组分析的统计和计算方法
- 批准号:
8746528 - 财政年份:
- 资助金额:
-- - 项目类别:
Statistical And Computational Methods For Gene Expression and Proteomic Analysis
基因表达和蛋白质组分析的统计和计算方法
- 批准号:
8148480 - 财政年份:
- 资助金额:
-- - 项目类别:
Statistical And Computational Methods For Gene Expression and Proteomic Analysis
基因表达和蛋白质组分析的统计和计算方法
- 批准号:
8941406 - 财政年份:
- 资助金额:
-- - 项目类别:
Statistical And Computational Methods For Molecular Biology And Biomedicine
分子生物学和生物医学的统计和计算方法
- 批准号:
7966721 - 财政年份:
- 资助金额:
-- - 项目类别:
Statistical And Computational Methods For Gene Expression and Proteomic Analysis
基因表达和蛋白质组分析的统计和计算方法
- 批准号:
7966728 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Advances in Statistical and Computational Methods for Analysis of Biomedical, Genetic, and Omics Data
会议:生物医学、遗传和组学数据分析的统计和计算方法的进展
- 批准号:
2232547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
- 批准号:
RGPIN-2019-05688 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
- 批准号:
RGPIN-2021-04062 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Computational and statistical methods for loss models
损失模型的计算和统计方法
- 批准号:
RGPIN-2017-06643 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
- 批准号:
RGPIN-2019-06131 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Computational and statistical methods for loss models
损失模型的计算和统计方法
- 批准号:
RGPIN-2017-06643 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
DMS/NIGMS 2: Statistical Methods and Computational Algorithms for Biobank Data
DMS/NIGMS 2:生物样本库数据的统计方法和计算算法
- 批准号:
2054253 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
REU Site: Mathematical, Statistical, and Computational Methods in the Life Sciences
REU 网站:生命科学中的数学、统计和计算方法
- 批准号:
2050133 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
- 批准号:
DGECR-2021-00298 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
- 批准号:
RGPIN-2019-05688 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual