Integration and Validation of Lesion Methods for Cognitive Neuroscience
认知神经科学损伤方法的整合和验证
基本信息
- 批准号:7530685
- 负责人:
- 金额:$ 4.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2009-02-01
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAnatomyAreaAssociative aphasiaAtlasesAttentionBase of the BrainBehaviorBehavioralBenchmarkingBiological ModelsBlood VesselsBrainBrain InjuriesBrain MappingBrain regionCategoriesCerebral cortexCerebrumClassificationCognitionCognitiveCommunitiesComplementComplexComputer softwareDataData SetDatabasesDependencyDetectionDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDisease regressionDisruptionFiberFunctional Magnetic Resonance ImagingFutureGenerationsGoalsGray unit of radiation doseImageImpairmentIndividualInstitutionLanguageLesionLocalizedLocationMagnetic Resonance ImagingMapsMeasuresMetabolicMetabolismMethodsModelingNamesNeurologicNeurosciencesNumbersPerformancePersonal SatisfactionPhysiologicalPositron-Emission TomographyPropertyPublic HealthPure AlexiaRangeRegistriesReportingReproducibilityResearch PersonnelResourcesRetrievalRoleSample SizeSamplingSampling BiasesSensitivity and SpecificitySiteSoftware ValidationSourceSpecificityStandards of Weights and MeasuresStatistical MethodsStrokeStructureSupport SystemSystemTestingTissuesValidationValidity and ReliabilityVisual FieldsVisual evoked cortical potentialVisual system structureWorkacquired brain damagebasebrain behaviorcognitive neuroscienceconceptdigital imagingfocal brain damagefootgray matterimprovedinterestneuropsychologicalpatient registryregional differencerelating to nervous systemretinotopicsimulationsizetoolwhite matterwhite matter damage
项目摘要
DESCRIPTION (provided by applicant): The lesion method, which identifies consistent relationships between sites of brain damage and acquired impairments of cognition and behavior, continues to be an indispensable approach in neuroscience for identifying the neural basis of higher function. The overall goal of this project is to put the lesion method on a rigorous, quantitative footing, and to determine and extend its limits, especially with respect to the specificity and interpretability of localization. We will introduce methods for formally integrating connectivity information, from diffusion tensor imaging, into group-level voxel-based lesion-deficit analyses. We will investigate the validity, reliability, and anatomic accuracy of existing and new methods, with particular attention to the impact of the subject group, non-uniform lesion coverage, and the different roles of gray and white matter damage. We will validate voxel-based statistical methods for lesion studies in two ways: 1) with simulations based on a large set of real brain lesions, that capture the effects of the complex structure of the natural lesion sample; and 2) in a well characterized database of lesions in the retinotopically organized visual system, for which there will be multispectral MRI data and extensive functional assessment (retinotopic fMRI, multifocal visual evoked potentials, quantitative visual fields, and metabolic PET data). Another overarching goal is to determine best practices for the lesion method, including identification of the optimal (efficient, sensitive, valid) forms of analysis and generation of resources for evaluating future improvements in the methods. Finally, we will disseminate methods, software, validation data sets, and performance benchmarks generated in this Project to the brain mapping community. The work proposed here will enable the lesion method to be used with unprecedented confidence to identify the essential components of neural systems for normal cognition and behavior. PUBLIC HEALTH RELEVANCE Studying the behavioral and cognitive consequences of focal brain damage provides information about the brain basis of cognitive abilities that can be gained from no other source. The proposed work will help establish best practices for the lesion method, making it easier to study and understand the impairments that result from stroke and other neurologic diseases.
描述(由申请人提供):损伤方法确定了脑损伤部位与认知和行为的获得性损伤之间的一致关系,仍然是神经科学中用于确定高级功能的神经基础的不可或缺的方法。该项目的总体目标是将损伤方法置于严格的定量基础上,并确定和扩展其限制,特别是在定位的特异性和可解释性方面。我们将介绍正式整合连接信息的方法,从扩散张量成像,到组水平的基于体素的病变缺陷分析。我们将研究现有和新方法的有效性、可靠性和解剖准确性,特别关注受试者群体的影响、不均匀的病变覆盖以及灰质和白色物质损伤的不同作用。我们将通过两种方式验证基于体素的统计方法用于病变研究:1)通过基于大量真实的脑病变的模拟,捕获自然病变样本的复杂结构的影响;以及2)在视网膜定位组织的视觉系统中的病变的良好表征的数据库中,将有多光谱MRI数据和广泛的功能评估(视网膜功能磁共振成像,多焦视觉诱发电位,定量视野,代谢PET数据)。另一个首要目标是确定损伤方法的最佳实践,包括确定最佳(高效、灵敏、有效)分析形式和生成用于评估方法未来改进的资源。最后,我们将传播的方法,软件,验证数据集,并在这个项目中产生的性能基准到大脑映射社区。本文提出的工作将使损伤方法能够以前所未有的信心用于识别正常认知和行为的神经系统的基本组成部分。研究局灶性脑损伤的行为和认知后果提供了关于认知能力的大脑基础的信息,这些信息无法从其他来源获得。拟议的工作将有助于建立损伤方法的最佳实践,使其更容易研究和理解中风和其他神经系统疾病造成的损害。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas J. Grabowski其他文献
A Framework for the Administration of Anti-amyloid Monoclonal Antibody Treatments in Early-Stage Alzheimer’s Disease
- DOI:
10.1007/s40263-024-01097-w - 发表时间:
2024-06-05 - 期刊:
- 影响因子:7.400
- 作者:
Michael H. Rosenbloom;Tricia O’Donohue;Domi Zhou-Clark;Deepashni Mala;Andrew Frazier;Michael Tarrant;Michelle Modrijan;Melora Riveira;Darla Chapman;Yvonne Griffin;Lauren Shakalis;Thomas J. Grabowski - 通讯作者:
Thomas J. Grabowski
Multi-ancestry genome-wide meta-analysis of 56,241 individuals identifies known and novel cross-population and ancestry-specific associations as novel risk loci for Alzheimer’s disease
- DOI:
10.1186/s13059-025-03564-z - 发表时间:
2025-07-17 - 期刊:
- 影响因子:9.400
- 作者:
Farid Rajabli;Penelope Benchek;Giuseppe Tosto;Nicholas Kushch;Jin Sha;Katrina Bazemore;Congcong Zhu;Wan-Ping Lee;Jacob Haut;Kara L. Hamilton-Nelson;Nicholas R. Wheeler;Yi Zhao;John J. Farrell;Michelle A. Grunin;Yuk Yee Leung;Pavel P. Kuksa;Donghe Li;Eder Lucio da Fonseca;Jesse B. Mez;Ellen L. Palmer;Jagan Pillai;Richard M. Sherva;Yeunjoo E. Song;Xiaoling Zhang;Takeshi Ikeuchi;Taha Iqbal;Omkar Pathak;Otto Valladares;Dolly Reyes-Dumeyer;Amanda B. Kuzma;Erin Abner;Larry D. Adams;Perrie M. Adams;Alyssa Aguirre;Marilyn S. Albert;Roger L. Albin;Mariet Allen;Lisa Alvarez;Liana G. Apostolova;Steven E. Arnold;Sanjay Asthana;Craig S. Atwood;Sanford Auerbach;Gayle Ayres;Clinton T. Baldwin;Robert C. Barber;Lisa L. Barnes;Sandra Barral;Thomas G. Beach;James T. Becker;Gary W. Beecham;Duane Beekly;Bruno A. Benitez;David Bennett;John Bertelson;Thomas D. Bird;Deborah Blacker;Bradley F. Boeve;James D. Bowen;Adam Boxer;James Brewer;James R. Burke;Jeffrey M. Burns;Joseph D. Buxbaum;Nigel J. Cairns;Laura B. Cantwell;Chuanhai Cao;Christopher S. Carlson;Cynthia M. Carlsson;Regina M. Carney;Minerva M. Carrasquillo;Scott Chasse;Marie-Francoise Chesselet;Nathaniel A. Chin;Helena C. Chui;Jaeyoon Chung;Suzanne Craft;Paul K. Crane;David H. Cribbs;Elizabeth A. Crocco;Carlos Cruchaga;Michael L. Cuccaro;Munro Cullum;Eveleen Darby;Barbara Davis;Philip L. De Jager;Charles DeCarli;John DeToledo;Malcolm Dick;Dennis W. Dickson;Beth A. Dombroski;Rachelle S. Doody;Ranjan Duara;NIlüfer Ertekin-Taner;Denis A. Evans;Kelley M. Faber;Thomas J. Fairchild;Kenneth B. Fallon;David W. Fardo;Martin R. Farlow;Victoria Fernandez-Hernandez;Steven Ferris;Robert P. Friedland;Tatiana M. Foroud;Matthew P. Frosch;Brian Fulton-Howard;Douglas R. Galasko;Adriana Gamboa;Marla Gearing;Daniel H. Geschwind;Bernardino Ghetti;John R. Gilbert;Rodney C.P. Go;Alison M. Goate;Thomas J. Grabowski;Neill R. Graff-Radford;Robert C. Green;John H. Growdon;Hakon Hakonarson;James Hall;Ronald L. Hamilton;Oscar Harari;John Hardy;Lindy E. Harrell;Elizabeth Head;Victor W. Henderson;Michelle Hernandez;Timothy Hohman;Lawrence S. Honig;Ryan M. Huebinger;Matthew J. Huentelman;Christine M. Hulette;Bradley T. Hyman;Linda S. Hynan;Laura Ibanez;Gail P. Jarvik;Suman Jayadev;Lee-Way Jin;Kim Johnson;Leigh Johnson;M. Ilyas Kamboh;Anna M. Karydas;Mindy J. Katz;John S. Kauwe;Jeffrey A. Kaye;C. Dirk Keene;Aisha Khaleeq;Masataka Kikuchi;Ronald Kim;Janice Knebl;Neil W. Kowall;Joel H. Kramer;Walter A. Kukull;Frank M. LaFerla;James J. Lah;Eric B. Larson;Alan Lerner;James B. Leverenz;Allan I. Levey;Andrew P. Lieberman;Richard B. Lipton;Mark Logue;Oscar L. Lopez;Kathryn L. Lunetta;Constantine G. Lyketsos;Douglas Mains;Flanagan E. Margaret;Daniel C. Marson;Eden RR. Martin;Frank Martiniuk;Deborah C. Mash;Eliezer Masliah;Paul Massman;Arjun Masurkar;Wayne C. McCormick;Susan M. McCurry;Andrew N. McDavid;Stefan McDonough;Ann C. McKee;Marsel Mesulam;Bruce L. Miller;Carol A. Miller;Joshua W. Miller;Thomas J. Montine;Edwin S. Monuki;John C. Morris;Shubhabrata Mukherjee;Amanda J. Myers;Trung Nguyen;Thomas Obisesan;Sid O’Bryant;John M. Olichney;Marcia Ory;Raymond Palmer;Joseph E. Parisi;Henry L. Paulson;Valory Pavlik;David Paydarfar;Victoria Perez;Elaine Peskind;Ronald C. Petersen;Helen Petrovitch;Aimee Pierce;Marsha Polk;Wayne W. Poon;Huntington Potter;Liming Qu;Mary Quiceno;Joseph F. Quinn;Ashok Raj;Murray Raskind;Eric M. Reiman;Barry Reisberg;Joan S. Reisch;John M. Ringman;Erik D. Roberson;Monica Rodriguear;Ekaterina Rogaeva;Howard J. Rosen;Roger N. Rosenberg;Donald R. Royall;Marwan Sabbagh;A. Dessa Sadovnick;Mark A. Sager;Mary Sano;Andrew J. Saykin;Julie A. Schneider;Lon S. Schneider;William W. Seeley;Susan H. Slifer;Scott Small;Amanda G. Smith;Janet P. Smith;Joshua A. Sonnen;Salvatore Spina;Peter St George-Hyslop;Takiyah D. Starks;Robert A. Stern;Alan B. Stevens;Stephen M. Strittmatter;David Sultzer;Russell H. Swerdlow;Rudolph E. Tanzi;Jeffrey L. Tilson;John Q. Trojanowski;Juan C. Troncoso;Magda Tsolaki;Debby W. Tsuang;Vivianna M. Van Deerlin;Linda J. van Eldik;Jeffery M. Vance;Badri N. Vardarajan;Robert Vassar;Harry V. Vinters;Jean-Paul Vonsattel;Sandra Weintraub;Kathleen A. Welsh-Bohmer;Patrice L. Whitehead;Ellen M. Wijsman;Kirk C. Wilhelmsen;Benjamin Williams;Jennifer Williamson;Henrik Wilms;Thomas S. Wingo;Thomas Wisniewski;Randall L. Woltjer;Martin Woon;Clinton B. Wright;Chuang-Kuo Wu;Steven G. Younkin;Chang-En Yu;Lei Yu;Xiongwei Zhu;Brian W. Kunkle;William S. Bush;Akinori Miyashita;Goldie S. Byrd;Li-San Wang;Lindsay A. Farrer;Jonathan L. Haines;Richard Mayeux;Margaret A. Pericak-Vance;Gerard D. Schellenberg;Gyungah R. Jun;Christiane Reitz;Adam C. Naj - 通讯作者:
Adam C. Naj
Thomas J. Grabowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas J. Grabowski', 18)}}的其他基金
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant