Bayesian Methods for Epistasis Association Mapping

用于上位关联映射的贝叶斯方法

基本信息

  • 批准号:
    7505888
  • 负责人:
  • 金额:
    $ 14.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Genome-wide case-control association studies hold great promises to identify the disease related genes and unveil their underlying complex regulatory mechanisms. For human common diseases, the disease variants are often non-Mendelian: they have low penetrance and show little effects to the carrier s disease susceptibility when being assessed individually, but they may interact with others in complex ways. Identifying multi-locus interactions (epistasis) associations within the human genome is, however, computationally and statistically very challenging. Recent development in statistical methods, such as the stepwise-logistic regression (Marchini et al. 2005) and the BEAM algorithm (Zhang and Liu, 2007), has demonstrated that genome-wide epistasis association mapping is not only feasible, but also can be more fruitful than traditional approaches that exclusively focus on marginal effects. In this proposal, we propose to further improve the BEAM algorithm to explore the LD structures and haplotypes inherited in the human genome to greatly advance our capability in detecting subtle disease associations and interactions. Various haplotype-based association methods have been developed in the past decades, yet there is no consensus on the best approach. We will develop a flexible Bayesian framework for testing both marginal and interaction associations using haplotypes. In particular, all possible haplotype combinations and their interactions will be efficiently explored via Monte Carlo Markov chain (MCMC) algorithms. In addition, we will treat markers that are not genotyped in an association study as the missing data. By iteratively imputing the missing markers and testing their associations, we will be able to identify a few disease associated markers (which may include the unobserved ones) that can explain the observed genetic difference between the patients and the normal people. In addition, unmeasured population structures in a case-control sample will induce long-range correlation between SNPs that may be falsely reported as interactions. It is urgently needed to further improve the efficiency and the accuracy of existing stratification detection algorithms. We propose to develop efficient Bayesian methods to identify population structures presented in the case-control sample. We further propose novel statistical models to adjust for the detected population effects. The software will be written in C++ for both Unix/Linux and Windows systems and freely available to the community.
描述(由申请人提供): 全基因组病例-对照关联研究有望发现疾病相关基因并揭示其潜在的复杂调控机制。对于人类常见疾病,疾病变体通常是非孟德尔的:它们具有低的遗传率,并且在单独评估时对携带者的疾病易感性几乎没有影响,但它们可能以复杂的方式与其他疾病相互作用。然而,识别人类基因组内的多位点相互作用(上位性)关联在计算和统计上非常具有挑战性。统计方法的最新发展,如逐步逻辑回归(Marchini et al. 2005)和BEAM算法(Zhang and Liu,2007),已经证明全基因组上位关联作图不仅是可行的,而且比只关注边际效应的传统方法更有成效。在这项提案中,我们建议进一步改进BEAM算法,以探索人类基因组中遗传的LD结构和单倍型,从而大大提高我们检测细微疾病关联和相互作用的能力。在过去的几十年中,已经开发了各种基于单体型的关联方法,但对于最佳方法没有达成共识。我们将开发一个灵活的贝叶斯框架,用于使用单倍型测试边缘关联和交互关联。特别是,所有可能的单倍型组合及其相互作用将通过蒙特卡罗马尔可夫链(MCMC)算法有效地探索。此外,我们将在关联研究中未进行基因分型的标记物视为缺失数据。通过反复估算缺失的标记并测试它们的关联,我们将能够识别一些疾病相关的标记(可能包括未观察到的标记),这些标记可以解释患者和正常人之间观察到的遗传差异。此外,病例对照样本中未测量的群体结构将诱导SNP之间的长程相关性,这些SNP可能被错误地报告为相互作用。因此,迫切需要进一步提高现有分层检测算法的效率和准确性。我们建议开发有效的贝叶斯方法来识别病例对照样本中的群体结构。我们进一步提出了新的统计模型来调整检测到的人口效应。该软件将用C++编写,适用于Unix/Linux和Windows系统,并免费提供给社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Zhang其他文献

Shape phase transitions in Nuclei: Effectice order parameters and trajectories
原子核中的形状相变:有效顺序参数和轨迹
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zhang;Houi ZhengFang;Liu YuXin
  • 通讯作者:
    Liu YuXin
The integrated scheduling problem in container terminal with dual-cycle operation
双周期作业集装箱码头综合调度问题

Yu Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Zhang', 18)}}的其他基金

Assess Neural Circuits and Subtypes Underlying Dimensions of Neuropsychiatric Symptoms in Alzheimer's Disease
评估阿尔茨海默病神经精神症状的神经回路和亚型
  • 批准号:
    10741906
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
Identifying Transdiagnostic Functional Connectivity Biomarkers for Cognitive Health and Psychopathology
识别认知健康和精神病理学的跨诊断功能连接生物标志物
  • 批准号:
    10667086
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
Establishing Multimodal Brain Biomarkers Using Data-driven Analyticsfor Treatment Selection in Depression
使用数据驱动分析建立多模式脑生物标志物以选择抑郁症的治疗方法
  • 批准号:
    10660219
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
Toward novel translucent and strong nanostructured dental zirconia
开发新型半透明且坚固的纳米结构牙科氧化锆
  • 批准号:
    10273470
  • 财政年份:
    2020
  • 资助金额:
    $ 14.15万
  • 项目类别:
Chromatin looping directed RAG targeting during V(D)J recombination
V(D)J 重组过程中染色质环化引导 RAG 靶向
  • 批准号:
    10524028
  • 财政年份:
    2020
  • 资助金额:
    $ 14.15万
  • 项目类别:
Chromatin looping directed RAG targeting during V(D)J recombination
V(D)J 重组过程中染色质环化引导 RAG 靶向
  • 批准号:
    10597767
  • 财政年份:
    2020
  • 资助金额:
    $ 14.15万
  • 项目类别:
A 2D segmentation method for jointly characterizing epigenetic dynamics in multiple cell lines
联合表征多个细胞系表观遗传动态的二维分割方法
  • 批准号:
    9382058
  • 财政年份:
    2017
  • 资助金额:
    $ 14.15万
  • 项目类别:
Toward novel translucent and strong nanostructured dental zirconia
开发新型半透明且坚固的纳米结构牙科氧化锆
  • 批准号:
    9904609
  • 财政年份:
    2017
  • 资助金额:
    $ 14.15万
  • 项目类别:
Graded Zirconia Structures for Resistance to Chipping, Delamination, and Fatigue
分级氧化锆结构可抵抗碎裂、分层和疲劳
  • 批准号:
    8595174
  • 财政年份:
    2012
  • 资助金额:
    $ 14.15万
  • 项目类别:
Graded Zirconia Structures for Resistance to Chipping, Delamination, and Fatigue
分级氧化锆结构可抵抗碎裂、分层和疲劳
  • 批准号:
    8788784
  • 财政年份:
    2012
  • 资助金额:
    $ 14.15万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了