NEW TECHNOLOGIES FOR TIME-RESOLVED INVESTIGATIONS

用于时间分辨调查的新技术

基本信息

  • 批准号:
    7357278
  • 负责人:
  • 金额:
    $ 1.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-01 至 2007-01-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. ABSTRACT: A serious limitation of the microdroplet spraying and flash photolysis techniques is that the reactions take place on the surface of a carbon-coated grid, and it seems questionable whether reactions involving macromolecular complexes will occur in this environment in the same way as they do in the test tube. Using holey grids could help, but this is not always feasible and does not eliminate interactions of the reactants with the carbon film or at the air-water interface that is present prior to freezing. The ¿pre-mix¿ mode is preferred, but since it relies on blotting with filter paper following deposition of the reaction mixture on the grid, the time resolution is poor (i.e., in the order of seconds). Ideally, kinetics experiments should be conducted in bulk phase in vitro under conditions that are as close to physiological as possible, and at selected time intervals samples should be taken and frozen on EM grids instantaneously. We will work to demonstrate feasibility of micro/nanofabrication and microfluidics technologies for performing fast (millisecond time-scale) pre-mix modes of operation by demonstration of a functioning microfabricated prototype device that mixes sub-microliter volumes of reactants either directly on a modified grid or before application to the grid, and then freezes the grid near-instantaneously. Successful implementation would establish this as the method of choice for time-resolved cryo-EM of actively functioning macromolecular assemblies, and would lay the groundwork for more sophisticated devices. This work is being done in collaboration with the nanotechnology group at RPI led by Omkaram Nalamasu, who is also the NYSTAR distinguished professor of Materials Science & Engineering and a pioneer in nanofabrication technology. Additionally, Professors Toh-Ming Lu (Ray Palmer Baker Distinguished Professor of Physics and Director of Rensselaer¿s Center for Advanced Interconnect Systems Technologies) and Professor Pulickel Ajayan, Professor of Materials Science and Engineering and a pioneer in the area of carbon nanotubes. The RPI engineer responsible for the major interaction between the two institutions is J. Jay McMahon.
该子项目是利用NIH/NCRR资助的中心赠款提供的资源的许多研究子项目之一。子项目和研究者(PI)可能从另一个NIH来源获得主要资金,因此可以在其他CRISP条目中表示。所列机构为中心,不一定是研究者所在机构。摘要:微滴喷雾和闪光光解技术的一个严重局限性是,反应发生在碳涂层网格的表面上,似乎值得怀疑的是,涉及大分子复合物的反应是否会在这种环境中以与试管中相同的方式发生。使用多孔网格可能有所帮助,但这并不总是可行的,并且不能消除反应物与碳膜或在冷冻前存在的空气-水界面处的相互作用。该预混模式是优选的,但是由于它依赖于在反应混合物沉积在网格上之后用滤纸进行印迹,时间分辨率差(即,以秒的量级)。理想情况下,动力学实验应在体外本体相中在尽可能接近生理的条件下进行,并且应在选定的时间间隔内采集样品并立即在EM网格上冷冻。 我们将努力证明微/纳米纤维和微流体技术的可行性,用于执行快速(毫秒时间尺度)预混合操作模式,通过演示一个功能微制造原型设备,该设备直接在修改后的网格上或在应用于网格之前混合亚微升体积的反应物,然后几乎瞬间冻结网格。成功的实施将建立这作为时间分辨的低温EM的方法的选择积极发挥作用的大分子组件,并将奠定基础,更复杂的设备。 这项工作是与Omkaram Nalamasu领导的RPI纳米技术小组合作完成的,Omkaram Nalamasu也是NYSTAR材料科学与工程杰出教授,也是纳米纤维技术的先驱。此外,卢德明教授(Ray Palmer Baker杰出物理学教授兼伦斯勒先进互连系统技术中心主任)和材料科学与工程教授、碳纳米管领域的先驱Pulickel Ajayan教授。负责这两个机构之间主要互动的RPI工程师是J. Jay McMahon。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OMKARAM NALAMASU其他文献

OMKARAM NALAMASU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OMKARAM NALAMASU', 18)}}的其他基金

NEW TECHNOLOGIES FOR TIME-RESOLVED INVESTIGATIONS
用于时间分辨调查的新技术
  • 批准号:
    7598351
  • 财政年份:
    2007
  • 资助金额:
    $ 1.12万
  • 项目类别:

相似海外基金

Development of Hard Real-Time Recognition Technologies With Deadline-driven AI Accelerators
利用截止日期驱动的人工智能加速器开发硬实时识别技术
  • 批准号:
    23H03477
  • 财政年份:
    2023
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of High-Performance and Real-time Biosensing Technologies Using Surface Functionalized Nanocarbon Materials
使用表面功能化纳米碳材料开发高性能和实时生物传感技术
  • 批准号:
    22KJ1606
  • 财政年份:
    2023
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New Technologies for Real-Time MRI-Guided Robotic-Assisted Abdominal Interventions
实时 MRI 引导机器人辅助腹部干预新技术
  • 批准号:
    10697329
  • 财政年份:
    2022
  • 资助金额:
    $ 1.12万
  • 项目类别:
New Technologies for Real-Time MRI-Guided Robotic-Assisted Abdominal Interventions
实时 MRI 引导机器人辅助腹部干预新技术
  • 批准号:
    10530929
  • 财政年份:
    2022
  • 资助金额:
    $ 1.12万
  • 项目类别:
Advanced architecture and interfacing technologies of real time power-hardware-in-the-loop simulation
实时电力硬件在环仿真的先进架构和接口技术
  • 批准号:
    RGPIN-2016-05952
  • 财政年份:
    2021
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time simulation technologies for voltage-sourced converter HVDC and AC-DC supergrids
电压源换流器HVDC和AC-DC超级电网的实时仿真技术
  • 批准号:
    506197-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced architecture and interfacing technologies of real time power-hardware-in-the-loop simulation
实时电力硬件在环仿真的先进架构和接口技术
  • 批准号:
    RGPIN-2016-05952
  • 财政年份:
    2020
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Key Technologies for Real-Time Diagnosis, Surveillance and Intervention of Resistant-Bacterial Infections Based on Nanopore Sequencing
基于纳米孔测序的耐药细菌感染实时诊断、监测和干预关键技术研究进展
  • 批准号:
    74399
  • 财政年份:
    2020
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Feasibility Studies
Real-time simulation technologies for voltage-sourced converter HVDC and AC-DC supergrids
电压源换流器HVDC和AC-DC超级电网的实时仿真技术
  • 批准号:
    506197-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Collaborative Research and Development Grants
Technologies for real-time molecular and cellular imaging in live animals
活体动物实时分子和细胞成像技术
  • 批准号:
    RGPIN-2015-05104
  • 财政年份:
    2019
  • 资助金额:
    $ 1.12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了