New Technologies for Real-Time MRI-Guided Robotic-Assisted Abdominal Interventions

实时 MRI 引导机器人辅助腹部干预新技术

基本信息

  • 批准号:
    10697329
  • 负责人:
  • 金额:
    $ 63.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-06 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Abdominal cancers are a devastating cause of morbidity and mortality worldwide. For example, hepatocellular carcinoma (HCC) has a grim five-year survival rate of less than 20% and is the fastest rising cause of cancer- related deaths in the U.S. Early and accurate diagnosis is crucial, as curative treatment is feasible by surgical resection and/or focal ablation. Compared to surgery, focal ablation reduces hospital stay, increases preservation of surrounding normal tissues, and decreases treatment-related morbidities. However, focal ablation still faces critical limitations in applicability and effectiveness due to inadequate image guidance and procedural accuracy provided by current approaches. Consequently, there is a pressing need to establish new minimally invasive interventions to improve the diagnosis and treatment of abdominal cancers. Conventional abdominal interventions rely on image guidance by ultrasound and/or computed tomography (CT), which can fail to provide sufficient visualization of the cancerous lesions. In addition, CT utilizes ionizing radiation and cannot be used for real-time imaging throughout an intervention. Magnetic resonance imaging (MRI) has crucial advantages that make it ideal for real-time guidance of abdominal interventions: it is the best and/or only way to visualize HCC and several types of abdominal cancers, has no ionizing radiation, and has the potential for real- time imaging of abdominal organs that are constantly in motion. However, current real-time MRI suffers from compromises in image quality, time latency, and difficulties in tracking the devices and tissue targets during motion. Furthermore, the narrow physical space of MRI scanners severely impedes the physician’s access to the patient inside the scanner during imaging. As a result, current MRI-guided interventions require cumbersome workflows that hamper the accuracy and efficiency. The objective of this proposal is to overcome these challenges and enable real-time MRI-guided abdominal interventions. The interdisciplinary research team will leverage synergistic innovations in (1) real-time MRI and computer-aided guidance methods, (2) MRI-compatible robotics, and (3) computer-aided feedback control methods and interactive user interfaces to create a new real-time MRI-guided robotic system. The system will be evaluated in programmable dynamic tissue phantoms and in vivo pig liver models to achieve safe, accurate, and efficient needle placement in moving targets – the foundation for all abdominal interventions. This new robotic system will enable next-generation real-time MRI-guided interventions that can positively impact the diagnosis and treatment of patients with liver tumors and abdominal cancers.
项目总结 腹癌是全世界发病率和死亡率的毁灭性原因。例如,肝细胞 癌症(HCC)的五年存活率不到20%,是癌症上升最快的原因- 在美国,早期和准确的诊断至关重要,因为通过手术治愈是可行的 切除和/或局部消融。与手术相比,局灶性消融减少了住院时间,增加了 保护周围正常组织,减少与治疗相关的发病率。然而,焦点 消融在适用性和有效性方面仍面临严重限制,原因是图像引导和治疗不足 目前的方法提供了程序上的准确性。因此,迫切需要建立新的 提高腹部肿瘤诊断和治疗水平的微创介入治疗。 传统的腹部干预依赖于超声和/或计算机断层扫描(CT)的图像引导, 这可能无法提供对癌变病变的充分可视化。此外,CT利用电离辐射 并且不能在整个干预过程中用于实时成像。磁共振成像(MRI)有 使其成为腹部干预实时指导的关键优势:这是最好的和/或唯一的方法 以可视化的肝细胞癌和几种类型的腹癌,没有电离辐射,并有可能真正- 对不断运动的腹部器官的时间成像。然而,当前的实时核磁共振成像存在以下问题 在图像质量、时间延迟和在跟踪设备和组织目标方面的困难 动议。此外,核磁共振扫描仪狭窄的物理空间严重阻碍了医生接触 在成像过程中,患者在扫描仪内。因此,目前的MRI引导的干预需要繁琐 影响准确性和效率的工作流。 该方案的目标是克服这些挑战,并实现实时MRI引导的腹部 干预措施。跨学科研究团队将利用(1)实时核磁共振和 计算机辅助指导方法,(2)与MRI兼容的机器人,以及(3)计算机辅助反馈控制 创建一种新的实时核磁共振引导机器人系统的方法和交互用户界面。系统将 在可编程动态组织模体和活体猪肝脏模型中进行评估,以实现安全、准确、 以及在移动目标中有效地放置针头--这是所有腹部干预的基础。这是一项新的 机器人系统将实现下一代实时核磁共振引导的干预,这将对 肝肿瘤和腹癌患者的诊断和治疗。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep learning-based automatic pipeline for 3D needle localization on intra-procedural 3D MRI.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David S.K. Lu其他文献

Prediction of treatment response and outcome of transarterial chemoembolization in patients with hepatocellular carcinoma using artificial intelligence: A systematic review of efficacy
利用人工智能预测肝细胞癌患者经动脉化疗栓塞治疗反应和结果:疗效的系统评价
  • DOI:
    10.1016/j.ejrad.2025.111948
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Pedram Keshavarz;Nariman Nezami;Fereshteh Yazdanpanah;Maryam Khojaste-Sarakhsi;Zahra Mohammadigoldar;Mobin Azami;Azadeh Hajati;Faranak Ebrahimian Sadabad;Jason Chiang;Justin P. McWilliams;David S.K. Lu;Steven S. Raman
  • 通讯作者:
    Steven S. Raman
Helical Computed Tomography for Abdominal Imaging
  • DOI:
    10.1007/s002689900040
  • 发表时间:
    1996-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Robert M. Krasny;David S.K. Lu
  • 通讯作者:
    David S.K. Lu

David S.K. Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David S.K. Lu', 18)}}的其他基金

New Technologies for Real-Time MRI-Guided Robotic-Assisted Abdominal Interventions
实时 MRI 引导机器人辅助腹部干预新技术
  • 批准号:
    10530929
  • 财政年份:
    2022
  • 资助金额:
    $ 63.5万
  • 项目类别:
MULTICENTER FEASIBILITY STUDY OF PERCUTANEOUS RADIOFREQUENCY ABLATION OF HEPA
经皮射频消融HEPA的多中心可行性研究
  • 批准号:
    7951555
  • 财政年份:
    2009
  • 资助金额:
    $ 63.5万
  • 项目类别:

相似海外基金

Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
  • 批准号:
    2745747
  • 财政年份:
    2022
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
  • 批准号:
    10008166
  • 财政年份:
    2018
  • 资助金额:
    $ 63.5万
  • 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
  • 批准号:
    18K18364
  • 财政年份:
    2018
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
  • 批准号:
    1922800
  • 财政年份:
    2017
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
  • 批准号:
    EP/P013309/1
  • 财政年份:
    2017
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
  • 批准号:
    EP/P012434/1
  • 财政年份:
    2017
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
  • 批准号:
    16K12096
  • 财政年份:
    2016
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
  • 批准号:
    16K00715
  • 财政年份:
    2016
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
  • 批准号:
    453832-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
  • 批准号:
    453832-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 63.5万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了