LIPOSOME-ENCAPSULATED NANOSHELLS

脂质体封装的纳米壳

基本信息

  • 批准号:
    7357800
  • 负责人:
  • 金额:
    $ 1.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-12-01 至 2006-11-30
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Salicylate is the active metabolite of aspirin and a member of the popular non-steroidal anti-inflammatory drugs (NSAIDs) used to treat fever, pain and arthritis. However, it is known to cause ulcers, which could be explained by the ability of the molecule to disrupt the phospholipid layer covering the gastric mucosa. Because mechanical properties of a lipid membrane can be altered by minor changes in the chemistry of the proteins or lipids that compose the membrane, and because electrostatics is the most dominant force at the nanoscale, it is believed that more detailed measurements of salicylate-lipid interactions will provide insights into these fundamental biological processes. Surface-Enhanced Raman Scattering (SERS) response of gold nanoshells, which are tunable optical nanoparticles consisting of a dielectric (silica) core and a thin metallic (gold) shell, can be a very useful tool to probe salicylate membrane interactions. The optical resonance of nanoshells gives rise to an intense optical field at the surface of the nanoparticle. The high optical intensities at the nanoshell surface can be used to enhance the chemical spectroscopic signal of salicylate, a Raman-active molecule, which when embedded in a lipid membrane on the surface of the nanoshell should yield a strong SERS signal. Thus, SERS will be useful to probe lipid membrane properties and monitor the insertion of salicylic acid molecules into the lipid membrane. SERS measurements of inserted salicylate hinges on successful liposome- encapsulation of nanoshells. This requires extensive microscopic characterization of the lipid-nanoshell interacting system. CryoEM measurements can provide evidence of liposome-encapsulation of nanoshells and can help establish the thickness of the lipid membrane formed around the nanoshells. Therefore, cryoEM imaging is essential to the progress of this project. Imaging of the prepared liposome-nanoshell samples will be conducted at the cryoEM facility at NCMI. Results from our studies will relate our continuum micromechanical measurements to molecular interactions. In addition to studying the effect salicylate has on membrane dynamics, nanoshell-encapsulated liposomes may provide a vehicle for intracellular uptake of nanoshells which can be useful for drug delivery.
这个子项目是利用由NIH/NCRR资助的中心拨款提供的资源的许多研究子项目之一。子项目和调查员(PI)可能从另一个NIH来源获得了主要资金,因此可能会出现在其他CRISE条目中。列出的机构是针对中心的,而不一定是针对调查员的机构。水杨酸盐是阿司匹林的活性代谢物,是治疗发烧、疼痛和关节炎的常用非类固醇抗炎药(NSAIDs)的一员。然而,已知会导致溃疡,这可以通过分子破坏覆盖在胃粘膜上的磷脂层的能力来解释。由于脂膜的机械性能可以通过组成膜的蛋白质或脂类的化学成分的微小变化来改变,而且静电是纳米尺度上最主要的作用力,因此人们相信,对水杨酸盐-脂类相互作用的更详细测量将提供对这些基本生物过程的洞察。金纳米壳是由介电(二氧化硅)核和薄金属(金)壳组成的可调谐光学纳米粒子,其表面增强拉曼散射(SERS)响应是探测水杨酸膜相互作用的非常有用的工具。纳米壳层的光学共振在纳米颗粒表面产生了强烈的光场。纳米壳表面的高光强可以用来增强水杨酸盐的化学光谱信号,水杨酸盐是一种拉曼活性分子,当嵌入到纳米壳表面的脂膜中时,应该会产生强烈的SERS信号。因此,表面增强拉曼光谱将有助于探测脂膜的性质和监测水杨酸分子插入脂膜。插入水杨酸盐铰链的表面增强拉曼光谱测量取决于脂质体成功包裹纳米壳。这需要对脂质-纳米壳相互作用系统进行广泛的微观表征。低温电子显微镜测量可以提供纳米壳被脂质体包裹的证据,并有助于确定纳米壳周围形成的脂膜的厚度。因此,低温电磁成像对该项目的进展至关重要。制备的脂质体-纳米壳样品的成像将在NCMI的CryoEM设施进行。我们的研究结果将把我们的连续微机械测量与分子相互作用联系起来。除了研究水杨酸盐对膜动力学的影响外,纳米壳包裹的脂质体还可以提供一种在细胞内摄取纳米壳的载体,这可能有助于药物的输送。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAOMI HALAS其他文献

NAOMI HALAS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAOMI HALAS', 18)}}的其他基金

Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
  • 批准号:
    10559694
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
Project 1: Streamlined identification of PAHs/PACs in environmental samples using ultracompact spectroscopy platforms and machine learning strategies
项目 1:使用超紧凑光谱平台和机器学习策略简化环境样品中 PAH/PAC 的识别
  • 批准号:
    10116392
  • 财政年份:
    2020
  • 资助金额:
    $ 1.51万
  • 项目类别:
LIPOSOME-ENCAPSULATED NANOSHELLS
脂质体封装的纳米壳
  • 批准号:
    7721143
  • 财政年份:
    2007
  • 资助金额:
    $ 1.51万
  • 项目类别:
LIPOSOME-ENCAPSULATED NANOSHELLS
脂质体封装的纳米壳
  • 批准号:
    7598608
  • 财政年份:
    2006
  • 资助金额:
    $ 1.51万
  • 项目类别:
LIPOSOME-ENCAPSULATED NANOSHELLS
脂质体封装的纳米壳
  • 批准号:
    7181117
  • 财政年份:
    2004
  • 资助金额:
    $ 1.51万
  • 项目类别:

相似海外基金

RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Nanoengineered, Encapsulated Catalysts from Fly Ash Waste
来自飞灰废物的纳米工程封装催化剂
  • 批准号:
    LP220100365
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Linkage Projects
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    2311986
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Development of brain-targeted intranasal formulation consisting of NSAIDs encapsulated in micelles using ionic liquids
开发由使用离子液体封装在胶束中的非甾体抗炎药组成的脑靶向鼻内制剂
  • 批准号:
    23K14395
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modelling of Prodrug Conversion Through Palladium Nanoparticles Encapsulated in Polymers
通过封装在聚合物中的钯纳米颗粒进行前药转化的建模
  • 批准号:
    2894749
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Studentship
Establishment of Ultrasound Control Technique of Microbubble-Encapsulated Vesicles and Its Medical Applications
微泡囊泡超声控制技术的建立及其医学应用
  • 批准号:
    23H00164
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
  • 批准号:
    10678425
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
Stem cell-derived Encapsulated Liver Tissue: a novel technology for more representative drug discovery and development
干细胞来源的包封肝组织:更具代表性的药物发现和开发的新技术
  • 批准号:
    MR/X503101/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Research Grant
RUI: CAS: Novel Carbon Nanosphere Encapsulated Bimetallic Catalysts and Metal-CeO2 Interfaces for CO2 Conversion to Value-added Chemicals
RUI:CAS:新型碳纳米球封装双金属催化剂和金属-CeO2 界面,用于将二氧化碳转化为增值化学品
  • 批准号:
    2247399
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
    Standard Grant
Double-Encapsulated mRNA Vaccine for COVID-19
适用于 COVID-19 的双囊 mRNA 疫苗
  • 批准号:
    10611763
  • 财政年份:
    2023
  • 资助金额:
    $ 1.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了