The Urinary Proteome and Renal Function Loss in Diabetes

糖尿病患者的尿蛋白质组和肾功能丧失

基本信息

  • 批准号:
    7470644
  • 负责人:
  • 金额:
    $ 36.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The risk of End Stage Renal Disease (ESRD) due to diabetes has tripled in recent decades. This has occurred despite widespread implementation of treatment with antihypertensive drugs and ACE inhibitors. This epidemic of ESRD is due to a real increase in the proportion of diabetic patients developing renal function loss rather than a consequence of improved survival of these patients. To contain this epidemic, research efforts are urgently needed to identify the determinants and mechanisms of renal function loss in diabetes so that new preventive programs can be developed. Particularly lacking is knowledge about the initiation and promotion of the early renal function decline. Recently, we found that renal function begins to decline in a large proportion of patients with type 1 diabetes once microalbuminuria (MA) develops. This early renal function decline was unrelated to further increases in the level of urinary albumin excretion but was associated with elevated levels of urinary chemokines. Preliminary proteomic analysis of urine from these patients revealed the presence of specific proteins in the urine of individuals with MA and early renal function decline that were absent in the urine of individuals with MA and stable renal function. These unknown urinary proteins represent candidates for exposures that injure the proximal tubules of patients with MA and are responsible for the elevated urinary chemokines. We aim to identify the proteins most associated with early renal function decline. Furthermore, we propose to use methods of proteomic analysis to characterize the urinary chemokines that distinguish patients with MA who are at risk of early renal function decline from those with stable renal function. These questions will be examined in both type 1 and type 2 diabetes. The Specific Aims of this proposal are: 1) To determine the frequency of significant early renal function decline in two cohorts of individuals with MA and type 1 diabetes (n=300), and type 2 diabetes (n=500). 2) To identify urinary protein(s) that cause early renal function decline in both cohorts by comparing urinary protein profiles between cases with early renal function decline and controls with stable renal function using proteomics analysis based on mass spectrometry. 3) To identify urinary and plasma cytokine/chemokine profiles that predict early renal function decline in the two cohorts using a targeted proteomics approach and Luminex technology. 4) To develop an etiologic model of early renal function decline in individuals with type 1 and type 2 diabetes and MA incorporating all the findings from these studies. The proposed research on the mechanisms and determinants of early renal function decline is novel and will provide data for the development of effective methods of prevention of renal function loss in diabetes.
DESCRIPTION (provided by applicant): The risk of End Stage Renal Disease (ESRD) due to diabetes has tripled in recent decades. This has occurred despite widespread implementation of treatment with antihypertensive drugs and ACE inhibitors. This epidemic of ESRD is due to a real increase in the proportion of diabetic patients developing renal function loss rather than a consequence of improved survival of these patients. To contain this epidemic, research efforts are urgently needed to identify the determinants and mechanisms of renal function loss in diabetes so that new preventive programs can be developed. Particularly lacking is knowledge about the initiation and promotion of the early renal function decline. Recently, we found that renal function begins to decline in a large proportion of patients with type 1 diabetes once microalbuminuria (MA) develops. This early renal function decline was unrelated to further increases in the level of urinary albumin excretion but was associated with elevated levels of urinary chemokines. Preliminary proteomic analysis of urine from these patients revealed the presence of specific proteins in the urine of individuals with MA and early renal function decline that were absent in the urine of individuals with MA and stable renal function. These unknown urinary proteins represent candidates for exposures that injure the proximal tubules of patients with MA and are responsible for the elevated urinary chemokines. We aim to identify the proteins most associated with early renal function decline. Furthermore, we propose to use methods of proteomic analysis to characterize the urinary chemokines that distinguish patients with MA who are at risk of early renal function decline from those with stable renal function. These questions will be examined in both type 1 and type 2 diabetes. The Specific Aims of this proposal are: 1) To determine the frequency of significant early renal function decline in two cohorts of individuals with MA and type 1 diabetes (n=300), and type 2 diabetes (n=500). 2) To identify urinary protein(s) that cause early renal function decline in both cohorts by comparing urinary protein profiles between cases with early renal function decline and controls with stable renal function using proteomics analysis based on mass spectrometry. 3) To identify urinary and plasma cytokine/chemokine profiles that predict early renal function decline in the two cohorts using a targeted proteomics approach and Luminex technology. 4) To develop an etiologic model of early renal function decline in individuals with type 1 and type 2 diabetes and MA incorporating all the findings from these studies. The proposed research on the mechanisms and determinants of early renal function decline is novel and will provide data for the development of effective methods of prevention of renal function loss in diabetes.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calorimetric analysis of the plasma proteome: identification of type 1 diabetes patients with early renal function decline.
  • DOI:
    10.1016/j.bbagen.2013.05.007
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Garbett NC;Merchant ML;Chaires JB;Klein JB
  • 通讯作者:
    Klein JB
Proteomic discovery of diabetic nephropathy biomarkers.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrzej S Krolewski其他文献

Andrzej S Krolewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrzej S Krolewski', 18)}}的其他基金

Causal connections between axon guidance proteins and early progressive kidney function decline in diabetes
轴突引导蛋白与糖尿病早期进行性肾功能衰退之间的因果关系
  • 批准号:
    10598448
  • 财政年份:
    2022
  • 资助金额:
    $ 36.72万
  • 项目类别:
Causal connections between axon guidance proteins and early progressive kidney function decline in diabetes
轴突引导蛋白与糖尿病早期进行性肾功能衰退之间的因果关系
  • 批准号:
    10343592
  • 财政年份:
    2022
  • 资助金额:
    $ 36.72万
  • 项目类别:
Development of Prognostic Algorithms to Identify Subjects at High Risk of ESKD in Type 2 Diabetes
开发预后算法来识别 2 型糖尿病 ESKD 高风险受试者
  • 批准号:
    10693928
  • 财政年份:
    2021
  • 资助金额:
    $ 36.72万
  • 项目类别:
Development of Prognostic Algorithms to Identify Subjects at High Risk of ESKD in Type 2 Diabetes
开发预后算法来识别 2 型糖尿病 ESKD 高风险受试者
  • 批准号:
    10491130
  • 财政年份:
    2021
  • 资助金额:
    $ 36.72万
  • 项目类别:
Development of Prognostic Algorithms to Identify Subjects at High Risk of ESKD in Type 2 Diabetes
开发预后算法来识别 2 型糖尿病 ESKD 高风险受试者
  • 批准号:
    10364853
  • 财政年份:
    2021
  • 资助金额:
    $ 36.72万
  • 项目类别:
Mapping Genes for End-Stage Renal Disease in Type 1 Diabetes
绘制 1 型糖尿病终末期肾病基因图谱
  • 批准号:
    7290994
  • 财政年份:
    2006
  • 资助金额:
    $ 36.72万
  • 项目类别:
Mapping Genes for End-Stage Renal Disease in Type 1 Diabetes
绘制 1 型糖尿病终末期肾病基因图谱
  • 批准号:
    7224532
  • 财政年份:
    2006
  • 资助金额:
    $ 36.72万
  • 项目类别:
The Urinary Proteome and Renal Function Loss in Diabetes
糖尿病患者的尿蛋白质组和肾功能丧失
  • 批准号:
    7095245
  • 财政年份:
    2004
  • 资助金额:
    $ 36.72万
  • 项目类别:
The Urinary Proteome and Renal Function Loss in Diabetes
糖尿病患者的尿蛋白质组和肾功能丧失
  • 批准号:
    7257250
  • 财政年份:
    2004
  • 资助金额:
    $ 36.72万
  • 项目类别:
The Urinary Proteome and Renal Function Loss in Diabetes
糖尿病患者的尿蛋白质组和肾功能丧失
  • 批准号:
    6776125
  • 财政年份:
    2004
  • 资助金额:
    $ 36.72万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 36.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了