Causal Discovery Algorithms for Translational Research with High-Throughput Data

用于高通量数据转化研究的因果发现算法

基本信息

  • 批准号:
    7643514
  • 负责人:
  • 金额:
    $ 0.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2009-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary Causal Discovery Algorithms for Translational Research with High-Throughput Data The long-term goal of this project is to provide to the biomedical community next-generation causal algorithms to facilitate discovery of disease molecular pathways and causative as well as predictive biomarkers and molecular signatures from high-throughput data. Such knowledge and methods are necessary toward earlier and more accurate diagnosis and prognosis, personalized medicine, and rational drug design. If successful, the proposed research will have significant and wide methodological and practical implications spanning several areas of biomedicine with a primary focus and immediate benefits in high-throughput diagnostics and personalized medicine. It will provide significantly improved computational methods and deeper theoretical understanding related to producing molecular signatures and understanding mechanisms of disease and concomitant leads for new drugs. It will provide evidence about applicability of novel causal methods in other types of data. It will generate insights in specific pathways of lung cancer in humans. It will deepen our understanding and solutions to the Rashomon effect in ¿omics¿ data. The proposed research will also shed light on the operational value of the stability heuristic. Finally the research will engage the international research community to address open computational causal discovery problems relevant to high-throughput and other biomedical data. ¿ Aim 1. Evaluate and characterize several novel causal algorithms for biomarker selection, molecular signature creation and reverse network engineering using real, simulated, resimulated, and experimental datasets. Study generality of the methods by means of applicability to non-¿omics¿ datasets. ¿ Aim 2. Evaluate and characterize, novel and state of the art causal algorithms against state-of-the-art non-causal and quasi-causal algorithms. ¿ Aim 3. Systematically investigate the Rashomon effect as it applies to biomarker and signature multiplicity. ¿ Aim 4. Systematically investigate the utility of applying the stability heuristic for causal discovery. ¿ Aim 5. Derive novel biomarkers, pathways and hypotheses for lung cancer. ¿ Aim 6. Induce novel solutions through an international causal discovery competition. ¿ Aim 7. Disseminate findings.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantin F. Aliferis其他文献

Computer models for identifying instrumental citations in the biomedical literature
  • DOI:
    10.1007/s11192-013-0983-y
  • 发表时间:
    2013-02-27
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Lawrence D. Fu;Yindalon Aphinyanaphongs;Constantin F. Aliferis
  • 通讯作者:
    Constantin F. Aliferis
Data explorer: a prototype expert system for statistical analysis.
数据浏览器:用于统计分析的原型专家系统。

Constantin F. Aliferis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantin F. Aliferis', 18)}}的其他基金

Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
  • 批准号:
    10385161
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
  • 批准号:
    10682547
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
  • 批准号:
    10656936
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
Data-Analysis-Core
数据分析核心
  • 批准号:
    10385164
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
Data-Analysis-Core
数据分析核心
  • 批准号:
    10682553
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
Discovering the Value of Imaging: A Collaborative Training Program in Biomedical Big Data and Comparative Effectiveness Research for the Field of Radiology
发现影像的价值:放射学领域生物医学大数据和比较有效性研究的协作培训项目
  • 批准号:
    9312810
  • 财政年份:
    2015
  • 资助金额:
    $ 0.74万
  • 项目类别:
Methods for Accurate and Efficient Discovery of Local Pathways.
准确有效地发现局部路径的方法。
  • 批准号:
    9343088
  • 财政年份:
    2012
  • 资助金额:
    $ 0.74万
  • 项目类别:
Methods for Accurate and Efficient Discovery of Local Pathways.
准确有效地发现局部路径的方法。
  • 批准号:
    8714055
  • 财政年份:
    2012
  • 资助金额:
    $ 0.74万
  • 项目类别:
Principled Methods for Very Large-Scale Causal Discovery
超大规模因果发现的原则方法
  • 批准号:
    6930544
  • 财政年份:
    2003
  • 资助金额:
    $ 0.74万
  • 项目类别:
Principled Methods for Very Large-Scale Causal Discovery
超大规模因果发现的原则方法
  • 批准号:
    6784073
  • 财政年份:
    2003
  • 资助金额:
    $ 0.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了