Causal Discovery Algorithms for Translational Research with High-Throughput Data
用于高通量数据转化研究的因果发现算法
基本信息
- 批准号:7643514
- 负责人:
- 金额:$ 0.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:AKT1 geneAKT2 geneAKT3 geneAddressAffectAlgorithmsAreaArtsBenchmarkingBioinformaticsBiologic CharacteristicBiological MarkersBiologyBiometryBook ChaptersBooksCancer cell lineCausationsCharacteristicsClinicClinicalClinical DataClinical TrialsCommunitiesComputational BiologyComputer softwareComputing MethodologiesConsultationsDataData SetDepthDevelopmentDiagnosisDiagnosticDimensionsDisciplineDiseaseDrug DesignEducational process of instructingEducational workshopEngineeringEnsureEpidermal Growth Factor ReceptorEuropeanEvaluationEventExcisionGene ExpressionGene TargetingGenomicsGoalsGoldHealthcareHereditary DiseaseHome environmentHumanHuman Cell LineInferiorInformation RetrievalInstitutionInternationalKnowledgeLaboratoriesLeadLearningLightLocalizedMachine LearningMalignant neoplasm of lungMarker DiscoveryMedicineMethodsModalityMolecularMolecular ProfilingNeighborhoodsNoiseNumbersOnline SystemsOutcomeOutputPaperPathway interactionsPeer ReviewPerformancePharmaceutical PreparationsProcessProteomicsProtocols documentationPublic DomainsPublishingQuality ControlRandom AllocationRandomizedRateResearchResearch PersonnelResearch ProposalsRoleSample SizeSamplingScheduleScoreServicesSimulateSolutionsStandards of Weights and MeasuresStructureTestingTextThinkingTissuesTranslational ResearchVariantWorkbasec-erbB-1 Proto-Oncogenesclinically relevantcomputer based statistical methodscomputer sciencecontextual factorscopingdata miningdesigndrug developmentheuristicshuman datahuman tissueimprovedinnovationinsightjournal articlemembernew technologynext generationnovelnovel diagnosticsoutcome forecastreconstructionresearch studysoftware systemssymposiumtheoriestool
项目摘要
Project Summary
Causal Discovery Algorithms for Translational Research with High-Throughput Data
The long-term goal of this project is to provide to the biomedical community next-generation causal
algorithms to facilitate discovery of disease molecular pathways and causative as well as predictive
biomarkers and molecular signatures from high-throughput data. Such knowledge and methods are
necessary toward earlier and more accurate diagnosis and prognosis, personalized medicine, and
rational drug design.
If successful, the proposed research will have significant and wide methodological and practical
implications spanning several areas of biomedicine with a primary focus and immediate benefits in
high-throughput diagnostics and personalized medicine. It will provide significantly improved
computational methods and deeper theoretical understanding related to producing molecular
signatures and understanding mechanisms of disease and concomitant leads for new drugs. It will
provide evidence about applicability of novel causal methods in other types of data. It will generate
insights in specific pathways of lung cancer in humans. It will deepen our understanding and solutions
to the Rashomon effect in ¿omics¿ data. The proposed research will also shed light on the operational
value of the stability heuristic. Finally the research will engage the international research community to
address open computational causal discovery problems relevant to high-throughput and other
biomedical data.
¿ Aim 1. Evaluate and characterize several novel causal algorithms for biomarker
selection, molecular signature creation and reverse network engineering using real, simulated,
resimulated, and experimental datasets. Study generality of the methods by means of
applicability to non-¿omics¿ datasets.
¿ Aim 2. Evaluate and characterize, novel and state of the art causal algorithms against
state-of-the-art non-causal and quasi-causal algorithms.
¿ Aim 3. Systematically investigate the Rashomon effect as it applies to biomarker and
signature multiplicity.
¿ Aim 4. Systematically investigate the utility of applying the stability heuristic for
causal discovery.
¿ Aim 5. Derive novel biomarkers, pathways and hypotheses for lung cancer.
¿ Aim 6. Induce novel solutions through an international causal discovery competition.
¿ Aim 7. Disseminate findings.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Constantin F. Aliferis其他文献
Computer models for identifying instrumental citations in the biomedical literature
- DOI:
10.1007/s11192-013-0983-y - 发表时间:
2013-02-27 - 期刊:
- 影响因子:3.500
- 作者:
Lawrence D. Fu;Yindalon Aphinyanaphongs;Constantin F. Aliferis - 通讯作者:
Constantin F. Aliferis
Data explorer: a prototype expert system for statistical analysis.
数据浏览器:用于统计分析的原型专家系统。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Constantin F. Aliferis;Evelyn Chao;Gregory F. Cooper - 通讯作者:
Gregory F. Cooper
Constantin F. Aliferis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Constantin F. Aliferis', 18)}}的其他基金
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
- 批准号:
10385161 - 财政年份:2021
- 资助金额:
$ 0.74万 - 项目类别:
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
- 批准号:
10682547 - 财政年份:2021
- 资助金额:
$ 0.74万 - 项目类别:
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
- 批准号:
10656936 - 财政年份:2021
- 资助金额:
$ 0.74万 - 项目类别:
Discovering the Value of Imaging: A Collaborative Training Program in Biomedical Big Data and Comparative Effectiveness Research for the Field of Radiology
发现影像的价值:放射学领域生物医学大数据和比较有效性研究的协作培训项目
- 批准号:
9312810 - 财政年份:2015
- 资助金额:
$ 0.74万 - 项目类别:
Methods for Accurate and Efficient Discovery of Local Pathways.
准确有效地发现局部路径的方法。
- 批准号:
9343088 - 财政年份:2012
- 资助金额:
$ 0.74万 - 项目类别:
Methods for Accurate and Efficient Discovery of Local Pathways.
准确有效地发现局部路径的方法。
- 批准号:
8714055 - 财政年份:2012
- 资助金额:
$ 0.74万 - 项目类别:
Principled Methods for Very Large-Scale Causal Discovery
超大规模因果发现的原则方法
- 批准号:
6930544 - 财政年份:2003
- 资助金额:
$ 0.74万 - 项目类别:
Principled Methods for Very Large-Scale Causal Discovery
超大规模因果发现的原则方法
- 批准号:
6784073 - 财政年份:2003
- 资助金额:
$ 0.74万 - 项目类别: