Discovering the Value of Imaging: A Collaborative Training Program in Biomedical Big Data and Comparative Effectiveness Research for the Field of Radiology
发现影像的价值:放射学领域生物医学大数据和比较有效性研究的协作培训项目
基本信息
- 批准号:9312810
- 负责人:
- 金额:$ 16.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmericanAmerican College of RadiologyAreaBig DataCanadaCaringClinicalCommunitiesComputerized Medical RecordCost Effectiveness AnalysisDataData AnalyticsData SetDatabasesDecision AnalysisEducational CurriculumEducational ModelsEducational StatusElementsEnsureExposure toFinancial SupportFundingGeneral PopulationGoalsHealthHealth Care CostsHealthcareHourHybridsImageImaging TechniquesIncidenceIndividualIndustryInstitute of Medicine (U.S.)InstitutesLearningMalignant NeoplasmsMeasurementMedicalMedical ImagingMentorsMentorshipMorphologyNew YorkNorth AmericaOutcomePathologyPatient CarePatient RightsPatient-Focused OutcomesPatientsPerformancePersonsPositron-Emission TomographyProblem SetsPublicationsRadiationRadiation exposureRadiology SpecialtyResearchResearch PersonnelResearch Project GrantsResearch TrainingResourcesRoentgen RaysSECTM1 geneScientistServicesSeverity of illnessSocietiesSpecific qualifier valueStructureTechnical ExpertiseTechnologyTimeTrainingTraining ProgramsTreatment EffectivenessUnited StatesUnited States Agency for Healthcare Research and QualityUniversitiesWorkbasebig biomedical datacomparative effectivenesscostcost effectiveeffectiveness researchevidence basegigabyteimaging studyimplementation scienceimprovedinstructorinterestlearning materialslecturesmedical schoolsmembernext generationprogramspublic health relevanceradiologistskeletalskillssymposiumsystematic review
项目摘要
DESCRIPTION (provided by applicant): Over the past 50 years, the cost of health care in the United States has dramatically increased, equaling $2.9 trillion and equating to 17.4% of the Gross Domestic Product (GDP) in 2013. Imaging costs have also significantly increased over the past several years, a cumulative 70% between 2000 and 2010. A large portion of this imaging cost increase was due to an increase in advanced imaging such as CT and MR, which more than doubled from 2000 to 2010. This increase has occurred despite the lack of studies documenting improved patient outcomes and value from these imaging studies. This rise in imaging, particularly that of CT, has also led to significant increases in radiation exposure to patients and potential increased incidence of radiation induced malignancies. To ensure the appropriate and cost effective use of imaging ‒ to make sure that imaging is performed the right way, at the right time, for the right patient's ‒ there is a critical need to perform comparative
effectiveness research (CER). One reason for the lack of research in imaging CER is that training in CER, and in the use of biomedical big data that is inherent to CER in imaging, is only available to a very small subset of medical imagers, and is available only at significant cost. Creating effective training in CER and big data analytics for the broader community of medical imagers is beyond the capabilities of individual imaging training programs. In order to address the unique and important need for CER and big data training for imagers, we propose a collaborative and broadly accessible tiered program in CER training and the use of biomedical big data. Tier 1 is a set of 8 lectures on the fundamentals of CER and big data to be available online and also presented at the American Institute for Radiologic Pathology, an intense, 1 month training course attended by 90-95% of all radiology residents in the United States and Canada. Tier 2 is an advanced CER and biomedical big data training program including the potential for continued mentorship in CER and the use of big data, directed toward and available to the medical imaging community. To ensure that this program has the greatest impact, we will use a hybrid educational structure with both online and in-person interactive sessions. Our proposal is unique in that it already has the support of the major national imaging organizations (including the American College of Radiology, American Roentgen Ray Society, Radiological Society of North America, Society of Chairs of Academic Radiology Departments, Association of Program Directors in Radiology, Association of University Radiologists, American Society of Neuroradiology, Society of Skeletal Radiology) as well as members of the imaging industry (including Philips Healthcare and Siemens Medical Solutions).
描述(由申请人提供):在过去的50年里,美国的医疗保健成本急剧增加,相当于2.9万亿美元,相当于2013年国内生产总值(GDP)的17.4%。在过去几年中,成像成本也大幅增加,2000年至2010年期间累计增加了70%。这一成像成本的增加很大一部分是由于先进成像的增加,如CT和MR,从2000年到2010年增加了一倍多。尽管缺乏记录这些成像研究改善患者结局和价值的研究,但这种增加还是发生了。这种成像的增加,特别是CT成像的增加,也导致患者的辐射暴露显著增加,并可能增加辐射诱发恶性肿瘤的发病率。为了确保适当和具有成本效益地使用成像检查,以确保在正确的时间以正确的方式对正确的患者进行成像,迫切需要进行比较。
有效性研究(CER)。缺乏成像CER研究的一个原因是,CER培训以及CER在成像中固有的生物医学大数据的使用仅适用于非常小的医学成像人员子集,并且仅以显着的成本提供。为更广泛的医学成像人员社区创建有效的CER和大数据分析培训超出了单个成像培训计划的能力。为了满足成像人员对CER和大数据培训的独特而重要的需求,我们提出了一个合作和广泛访问的CER培训和生物医学大数据使用的分层计划。Tier 1是一套8个关于CER和大数据基础知识的讲座,可在线获得,也可在美国放射病理学研究所(American Institute for Radiologic Pathology)进行,这是一个为期1个月的密集培训课程,美国和加拿大90-95%的放射科住院医师参加了该课程。Tier 2是一个高级CER和生物医学大数据培训计划,包括CER持续指导的可能性和大数据的使用,针对医学成像社区并提供给医学成像社区。为了确保该计划产生最大的影响,我们将使用混合教育结构,包括在线和面对面的互动课程。我们的建议是独一无二的,因为它已经得到了主要国家成像组织的支持(包括美国放射学会、美国伦琴射线学会、北美放射学会、学术放射学系主任学会、放射学项目主任协会、大学放射学家协会、美国神经放射学会、骨骼放射学会)以及成像行业成员(包括飞利浦医疗保健和西门子医疗解决方案)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Constantin F. Aliferis其他文献
Computer models for identifying instrumental citations in the biomedical literature
- DOI:
10.1007/s11192-013-0983-y - 发表时间:
2013-02-27 - 期刊:
- 影响因子:3.500
- 作者:
Lawrence D. Fu;Yindalon Aphinyanaphongs;Constantin F. Aliferis - 通讯作者:
Constantin F. Aliferis
Data explorer: a prototype expert system for statistical analysis.
数据浏览器:用于统计分析的原型专家系统。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Constantin F. Aliferis;Evelyn Chao;Gregory F. Cooper - 通讯作者:
Gregory F. Cooper
Constantin F. Aliferis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Constantin F. Aliferis', 18)}}的其他基金
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
- 批准号:
10385161 - 财政年份:2021
- 资助金额:
$ 16.76万 - 项目类别:
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
- 批准号:
10682547 - 财政年份:2021
- 资助金额:
$ 16.76万 - 项目类别:
Minnesota Tissue Mapping Center for Senescent Cells
明尼苏达衰老细胞组织绘图中心
- 批准号:
10656936 - 财政年份:2021
- 资助金额:
$ 16.76万 - 项目类别:
Methods for Accurate and Efficient Discovery of Local Pathways.
准确有效地发现局部路径的方法。
- 批准号:
9343088 - 财政年份:2012
- 资助金额:
$ 16.76万 - 项目类别:
Methods for Accurate and Efficient Discovery of Local Pathways.
准确有效地发现局部路径的方法。
- 批准号:
8714055 - 财政年份:2012
- 资助金额:
$ 16.76万 - 项目类别:
Principled Methods for Very Large-Scale Causal Discovery
超大规模因果发现的原则方法
- 批准号:
6930544 - 财政年份:2003
- 资助金额:
$ 16.76万 - 项目类别:
Principled Methods for Very Large-Scale Causal Discovery
超大规模因果发现的原则方法
- 批准号:
6784073 - 财政年份:2003
- 资助金额:
$ 16.76万 - 项目类别:
Causal Discovery Algorithms for Translational Research with High-Throughput Data
用于高通量数据转化研究的因果发现算法
- 批准号:
7643514 - 财政年份:2003
- 资助金额:
$ 16.76万 - 项目类别:
相似海外基金
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
- 批准号:
6709834 - 财政年份:1999
- 资助金额:
$ 16.76万 - 项目类别:
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
- 批准号:
2743624 - 财政年份:1999
- 资助金额:
$ 16.76万 - 项目类别:
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
- 批准号:
6438277 - 财政年份:1999
- 资助金额:
$ 16.76万 - 项目类别:
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
- 批准号:
6342136 - 财政年份:1999
- 资助金额:
$ 16.76万 - 项目类别: