Developing strategies and a toolbox for metabolic engineering of thermophiles for ethanol production
开发用于乙醇生产的嗜热菌代谢工程的策略和工具箱
基本信息
- 批准号:BB/E002994/1
- 负责人:
- 金额:$ 43.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The UK is committed to replacing an increasing fraction of current liquid fuel consumption with biologically derived fuels. While this is attractive given the current price of oil, the primary driver for this was a commitment made under the Kyoto protocol, to reduce greenhouse gas emissions. Unlike fossil fuels, those derived from green plants are virtually carbon dioxide neutral. Ethanol, produced by the fermentation of sugars, is an established biofuel which is already extensively used in Brazil and in the USA, and the technology to run cars on either pure ethanol or ethanol-petroleum mixtures exists. The classic method for ethanol production uses yeast to ferment either sucrose (from sugar cane or beet) or glucose (from starch). Yeast is one of the few organisms that can ferment sugars exclusively to ethanol and carbon dioxide, which it does by employing the enzymes pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). PDC is rarely found in bacteria, which is the main reason why the brewing industry, and more recently, fuel ethanol production have used yeast. However, the energy balance of ethanol production from sucrose and starch is marginal and it is clear that this, and the overall economics would be much improved if it was possible to use all of the sugars present in biomass, particularly those available in hemicellulose and cellulose, which together comprise the most abundant global sources of carbohydrates. Unfortunately, bakers/brewers yeast does not naturally ferment the pentose (C5) sugars found in hemicellulose, and those yeast strains that do, grow very slowly. Furthermore, it would be more efficient to run continuous fermentation processes than the sequential batch processes typical of industrial yeast fermentations, which incur significant 'dead time' between runs. A continuous process implies continuous removal of ethanol, which is most efficiently achieved by operating at elevated temperature (the boiling point of ethanol is 78oC). Thus, an ideal organism for ethanol production would rapidly ferment a wide range of sugars, including pentoses, and possibly more complex substrates such as cellulose, at temperatures around 70oC (ethanol can be removed at this temperature using gas stripping). However, such an organism has not been isolated yet. Yeasts do not grow at temperatures above 50oC, while thermophilic bacteria that can often metabolise a range of sugars, including complex polymers, tend to produce multiple fermentation products, the composition of which may depend on growth conditions. This proposal presents two strategies for constructing thermophilic bacteria which produce ethanol exclusively from a range of biomass-derived sugars. It starts from the premise that, given the range of different biomass substrates and pretreatments that are likely to be used, it would be more feasible to isolate bacteria able to grow on the various substrates and engineer their downstream metabolism to ethanol production, than to find and engineer a good thermophilic ethanol producer to use a wide range of substrates. The first strategy is to use a 'directed evolution' approach to produce a modified PDC which works in a thermophile at 65-70oC. This essentially involves mutating the relevant gene at high frequency, and/or recombining elements from known similar genes present in thermophiles, combined with a powerful selection method for improved variants. The second strategy involves creating a novel fermentation pathway based on combinations of enzymes known to be expressed in thermophiles, but which are not normally expressed together. In particular it involves expressing pyruvate dehydrogenase, an enzyme usually associated with aerobic growth, under anaerobic conditions, together with two normally anaerobic enzymes. Together, these would have the same outcome as the PDC pathway. We have a precedent that this pathway already operates in mutants of the thermophile Geobacillus thermoglucosidasius.
英国致力于用生物学衍生的燃料代替当前液体燃料消耗的一部分。鉴于目前的石油价格,这很有吸引力,但这是根据京都协议做出的承诺,是减少温室气体排放的承诺。与化石燃料不同,从绿色植物中衍生的燃料实际上是二氧化碳中性的。乙醇是由糖的发酵生产的,是一种已建立的生物燃料,已经在巴西和美国广泛使用,并且在纯乙醇或乙醇 - 甲醇混合物上运行汽车的技术存在。乙醇生产的经典方法使用酵母发酵蔗糖(来自甘蔗或甜菜)或葡萄糖(来自淀粉)。酵母是可以将糖专为乙醇和二氧化碳发酵的少数生物之一,它通过使用丙酮酸酶脱羧酶(PDC)和酒精脱氢酶(ADH)来做到这一点。 PDC很少在细菌中发现,这是为什么酿造行业以及最近的燃料乙醇生产使用酵母的主要原因。但是,蔗糖和淀粉产生乙醇的能量平衡是微不足道的,很明显,如果可以使用生物量中存在的所有糖,尤其是半纤维素和纤维素中的所有糖,这将大大改善,这将兼容最丰富的全球全球碳水化合物来源。不幸的是,面包师/酿酒师酵母并不自然发酵半纤维素中的五糖(C5)糖,而那些做得非常缓慢的酵母菌菌株。此外,运行连续发酵过程比工业酵母发酵的典型批量批量过程更有效,这在运行之间引起了显着的“死时间”。一个连续的过程意味着连续去除乙醇,这是通过在升高温度下运行(乙醇的沸点为78oC)最有效地实现的。因此,一种用于乙醇生产的理想生物会在70oC左右的温度下迅速发酵各种糖,包括五齿,可能是更复杂的底物(例如纤维素)(可以在此温度下使用气体剥离在此温度下除去乙醇)。但是,这种生物尚未孤立。酵母在50oC以上的温度下不会生长,而嗜热细菌通常可以代谢一系列糖,包括复杂聚合物,倾向于产生多种发酵产物,其组成可能取决于生长条件。该提案提出了两种构建嗜热细菌的策略,这些策略仅从一系列生物质衍生的糖中产生乙醇。从以下前提下,鉴于可能使用的不同生物量底物和预处理的范围,要分离能够在各种底物上生长的细菌并将其下游代谢的细菌隔离为乙醇的生产更为可行,而不是找到并设计出良好的热乙醇生产商来使用广泛的替代品范围。第一种策略是使用“定向进化”方法生产改良的PDC,该PDC在65-70oc的嗜热中起作用。这本质上涉及在高频中突变相关基因,和/或重组来自嗜热中的已知类似基因的元素,并结合了改进变体的强大选择方法。第二种策略涉及基于已知在嗜热剂中表达的酶的组合创建一种新颖的发酵途径,但通常不会一起表达。特别是它涉及表达丙酮酸脱氢酶,这是一种通常与有氧生长有关的酶,在厌氧条件下以及两种通常是厌氧酶。在一起,这些结果与PDC途径具有相同的结果。我们有一个先例,即该途径已经在热热葡萄糖酸的突变体中运行。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of a versatile shuttle vector for gene expression in Geobacillus spp.
- DOI:10.1016/j.plasmid.2008.04.001
- 发表时间:2008-07-01
- 期刊:
- 影响因子:2.6
- 作者:Taylor, Mark P.;Esteban, Carlos D.;Leak, David J.
- 通讯作者:Leak, David J.
Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts.
- DOI:10.1111/j.1751-7915.2010.00246.x
- 发表时间:2011-07
- 期刊:
- 影响因子:5.7
- 作者:Taylor MP;van Zyl L;Tuffin IM;Leak DJ;Cowan DA
- 通讯作者:Cowan DA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jonathan Leak其他文献
David Jonathan Leak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jonathan Leak', 18)}}的其他基金
ISCF WAVE 1 IB Process intensification of cellulosic biofuel production using continuous product extraction with microbubble technology
ISCF WAVE 1 IB 使用微泡技术进行连续产品提取,强化纤维素生物燃料生产
- 批准号:
BB/S006532/1 - 财政年份:2018
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
[16- FAPESP-BE] An integrated approach to explore a novel paradigm for biofuel production from lignocellulosic feedstocks
[16- FAPESP-BE] 探索木质纤维素原料生产生物燃料新范例的综合方法
- 批准号:
BB/P017460/1 - 财政年份:2017
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Production of D-lactate in Geobacillus spp App No 50484-338192
在地芽孢杆菌属中生产 D-乳酸 申请号 50484-338192
- 批准号:
BB/M028674/1 - 财政年份:2015
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
A Network of Integrated Technologies: Plants to Products
集成技术网络:从工厂到产品
- 批准号:
BB/L013819/1 - 财政年份:2014
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Fractionation and exploitation of the component value of DDGS
DDGS成分价值的分离与开发
- 批准号:
BB/J019445/1 - 财政年份:2013
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Development of Geobacillus thermoglucosidasius as a robust platform for production of chemicals from renewables through modelling and experimentation
通过建模和实验开发热葡萄糖苷土芽孢杆菌作为利用可再生能源生产化学品的强大平台
- 批准号:
BB/J001120/2 - 财政年份:2012
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Development of Geobacillus thermoglucosidasius as a robust platform for production of chemicals from renewables through modelling and experimentation
通过建模和实验开发热葡萄糖苷土芽孢杆菌作为利用可再生能源生产化学品的强大平台
- 批准号:
BB/J001120/1 - 财政年份:2012
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Evaluation of consolidated bioprocessing as a strategy for production of fuels and chemicals from lignocellulose
综合生物加工作为木质纤维素生产燃料和化学品策略的评估
- 批准号:
BB/I00534X/2 - 财政年份:2012
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Evaluation of consolidated bioprocessing as a strategy for production of fuels and chemicals from lignocellulose
综合生物加工作为木质纤维素生产燃料和化学品策略的评估
- 批准号:
BB/I00534X/1 - 财政年份:2010
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Pichia pastoris protein secretion: analysis of constraints optimisation and methods development
毕赤酵母蛋白质分泌:约束优化分析和方法开发
- 批准号:
BB/F004907/1 - 财政年份:2008
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
相似国自然基金
意识障碍康复的神经血管跨模态信息耦合预测-评估模型与自适应调控策略
- 批准号:62376190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
- 批准号:22378279
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于π-d杂化策略的铁磁金属颗粒膜界面磁耦合及反常霍尔效应研究
- 批准号:12304134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人车双向感知的驾驶人状态调节策略设计与优化
- 批准号:72301151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于矩阵方法的电价博弈分析与控制策略研究
- 批准号:62303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Extending the Prevention Toolbox: Exploring the Acceptability and Impact of Long-acting Injectable PrEP among MSM in Baltimore: A Pilot Study
扩展预防工具箱:探索巴尔的摩 MSM 中长效注射 PrEP 的可接受性和影响:一项试点研究
- 批准号:
10838855 - 财政年份:2023
- 资助金额:
$ 43.08万 - 项目类别:
The river restoration 'ecological toolbox': simultaneously examining biomonitoring indices to guide catchment management strategies
河流恢复“生态工具箱”:同时检查生物监测指标以指导流域管理策略
- 批准号:
2755899 - 财政年份:2022
- 资助金额:
$ 43.08万 - 项目类别:
Studentship
The river restoration 'ecological toolbox': examining biomonitoring indices to guide catchment management strategies
河流恢复“生态工具箱”:检查生物监测指数以指导流域管理策略
- 批准号:
2610489 - 财政年份:2021
- 资助金额:
$ 43.08万 - 项目类别:
Studentship
Building a Toolbox of Sensors and Approaches to Monitor the Proteostasis Network Core B
构建监测蛋白质稳态网络核心 B 的传感器和方法工具箱
- 批准号:
10432028 - 财政年份:2018
- 资助金额:
$ 43.08万 - 项目类别:
Building a Toolbox of Sensors and Approaches to Monitor the Proteostasis Network Core B
构建监测蛋白质稳态网络核心 B 的传感器和方法工具箱
- 批准号:
10183111 - 财政年份:2018
- 资助金额:
$ 43.08万 - 项目类别: