Self-assembled cell aggregates for tissue engineering

用于组织工程的自组装细胞聚集体

基本信息

  • 批准号:
    BB/E017142/1
  • 负责人:
  • 金额:
    $ 39.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Tissue engineering aims to replace damaged or lost tissues or organs with functional constructs that have been developed in the laboratory. Cells, ideally from the patient themselves, are isolated and grown in culture flasks before being transferred to a three-dimensional polymer scaffold. Here, the continued growth and development of the cells into a functional tissue replacement is supported until the construct is ready for implantation into the patient. This, of course, is an idealized scenario and there are still many technical hurdles that must be overcome if routine fabrication of tissue replacements is to become a reality. One major problem encountered within this area is the nature of 3D scaffolds that cells are grown on. While they can provide a suitable environment for cells by promoting their adhesion and releasing factors that help their growth, their internal scale and structure means that cells behave as if grown on a flat surface. In natural tissues, cells receive signals in three dimensions, not only from their neighbours, but from the protein matrix that surrounds them. These signals are vital for the maintenance of correct tissue function and cell survival, so there is a need in tissue engineering and, more broadly, in biological research as a whole, to develop novel methods to grow cell structures with a true 3D organization. This research proposes a novel method of 3D cell culture where cells and cell-sized polymer microparticles are rapidly cross-linked together in suspension to effectively self-assemble a polymer scaffold around the cells. Not only will this provide the cells with a 3D signalling environment, but it also benefits from the ability to release growth factors from the particles to assist cell and tissue development. In this system, the particles are biodegradable and disappear over time to leave a natural tissue. The research programme will initially optimize methods to cross-link the cells with polymer microparticles and proceed to determine the best conditions for the 3D formation of aggregate structures. To demonstrate its potential benefits, adult stem cells from bone marrow will be isolated and aggregated with polymer microparticles. These cells have the potential to develop into a number of different tissues depending on the culture conditions used. For this work, the cells will be aggregated with microparticles that release a growth factor that promotes bone formation. The success of this approach will be determined by examining bone-specific markers within the aggregates in comparison to aggregates that contained no growth factor. It is apparent that this technique has huge potential for the generation of replacement tissue for medical applications. Not only is it useful for bone engineering, but can also be applied to any cell or tissue type and relevant growth factors. Therefore, this could find widespread use in helping to overcome the huge socio-economic cost caused by injury and disease. This technology could also be used to develop more realistic 3D tissue models for fundamental biological research. For example, the ability to construct realistic tumour models in the laboratory offers the prospect of a greater understanding of cancer and the development of more effective treatments. In addition, this research could be applied to construct tissues for drug testing applications, decreasing the requirement to test pharmaceutical products on animals.
组织工程旨在用实验室开发的功能结构替代受损或丢失的组织或器官。细胞(最好来自患者本身)在培养瓶中分离并生长,然后转移到三维聚合物支架上。在这里,支持细胞持续生长和发育成功能性组织替代物,直到该结构准备好植入患者体内。当然,这是一个理想化的场景,如果要使组织替代品的常规制造成为现实,仍然必须克服许多技术障碍。这一领域遇到的一个主要问题是细胞生长的 3D 支架的性质。虽然它们可以通过促进细胞粘附和释放有助于细胞生长的因子来为细胞提供合适的环境,但它们的内部规模和结构意味着细胞的行为就像在平坦的表面上生长一样。在自然组织中,细胞不仅从邻近的细胞接收三维信号,还从它们周围的蛋白质基质接收信号。这些信号对于维持正确的组织功能和细胞存活至关重要,因此组织工程以及更广泛的整个生物研究需要开发新的方法来生长具有真正 3D 组织的细胞结构。这项研究提出了一种新的 3D 细胞培养方法,其中细胞和细胞大小的聚合物微粒在悬浮液中快速交联在一起,从而在细胞周围有效地自组装聚合物支架。这不仅将为细胞提供 3D 信号环境,而且还受益于从颗粒中释放生长因子以协助细胞和组织发育的能力。在这个系统中,颗粒是可生物降解的,并随着时间的推移消失,留下天然组织。该研究项目将首先优化细胞与聚合物微粒的交联方法,并继续确定聚合结构 3D 形成的最佳条件。为了证明其潜在的好处,来自骨髓的成体干细胞将被分离并与聚合物微粒聚集。根据所使用的培养条件,这些细胞有可能发育成许多不同的组织。在这项工作中,细胞将与微粒聚集,释放出促进骨形成的生长因子。该方法的成功与否将通过检查聚集体中的骨特异性标记物与不含生长因子的聚集体进行比较来确定。显然,这项技术在生成医疗应用替代组织方面具有巨大潜力。它不仅可用于骨工程,而且还可应用于任何细胞或组织类型以及相关的生长因子。因此,这可以广泛用于帮助克服因伤害和疾病造成的巨大社会经济成本。该技术还可用于为基础生物学研究开发更真实的 3D 组织模型。例如,在实验室构建真实肿瘤模型的能力为更好地了解癌症和开发更有效的治疗方法提供了前景。此外,这项研究还可用于构建用于药物测试应用的组织,从而减少在动物身上测试药品的要求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul De Bank其他文献

Paul De Bank的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul De Bank', 18)}}的其他基金

Photopatterned Dendrons for Tissue Engineering Applications
用于组织工程应用的光图案化树突
  • 批准号:
    EP/G049572/1
  • 财政年份:
    2009
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Research Grant

相似国自然基金

聚电解质自组装膜用于仿生设计层状复合材料的研究
  • 批准号:
    20306029
  • 批准年份:
    2003
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Self-assembled iron(III) hosts for MRI-guided delivery of chemotherapeutics
用于 MRI 引导化疗药物输送的自组装铁 (III) 宿主
  • 批准号:
    10303801
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
Lipid Based Self Assembled Materials Synthesis and Characterization
脂质自组装材料的合成与表征
  • 批准号:
    10490411
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10196486
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
  • 批准号:
    10405097
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
Lipid Based Self Assembled Materials Synthesis and Characterization
脂质自组装材料的合成与表征
  • 批准号:
    10682620
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
Lipid Based Self Assembled Materials Synthesis and Characterization
脂质自组装材料的合成与表征
  • 批准号:
    10282408
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
Self-assembled iron(III) hosts for MRI-guided delivery of chemotherapeutics
用于 MRI 引导化疗药物输送的自组装铁 (III) 宿主
  • 批准号:
    10405656
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
Targeting Effector Immune cells to Cancer with Chemically Self-Assembled Nanorings (CSANs)
使用化学自组装纳米环 (CSAN) 将效应免疫细胞靶向癌症
  • 批准号:
    10600820
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
Targeting Effector Immune cells to Cancer with Chemically Self-Assembled Nanorings (CSANs)
使用化学自组装纳米环 (CSAN) 将效应免疫细胞靶向癌症
  • 批准号:
    10347346
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
  • 批准号:
    9923657
  • 财政年份:
    2019
  • 资助金额:
    $ 39.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了