Elucidating novel pathways and regulation of nitrogen assimilation in alpha proteobacteria exemplified by the soil organism Paracoccus denitrificans

阐明以土壤生物脱氮副球菌为代表的α变形菌中氮同化的新途径和调节

基本信息

  • 批准号:
    BB/E021999/1
  • 负责人:
  • 金额:
    $ 42.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Nitrogen is one of the critical elements that is required for all forms of biological life on Earth because it is a building block for DNA and proteins. All biological life forms must therefore have mechanisms by which they can capture nitrogen from the environment and incorporate it into important cellular components. This process is called NITROGEN ASSIMILATION. Life forms at the top of the food chain, such as Humans, assimilate nitrogen from organic nitrogen sources extracted from the plants and animals that they ingest and digest. However, some life forms lower down in the food chain, such as bacteria, can assimilate nitrogen from simple inorganic forms such as nitrogen gas, nitrate or ammonium as well as from simple organic forms such as amino acids. Many agricultural soils are rich in nitrates as they are applied by farmers to encourage high yielding plant crop production and water run-off from soils is in turn enriching rivers, lakes and oceans in nitrate. This then provides a source of nitrogen that can lead to proliferation of the bacteria that can utilise nitrate as a nitrogen-source for assimilation. In agricultural fields the diversion of nitrate towards a 'food source' for soil microbes, rather than the crops for which it was intended, is economically wasteful. However, some estimates suggest that this may be happening on a large scale. It is then timely to seek an academic knowledge base from which it might be possible to develop strategies to lessen these losses. This requires an understanding of the molecular machinery with which soil bacteria incorporate nitrogen from nitrate into cellular nitrogen in the process of NITRATE ASSIMILATION and also the means by which this process is regulated when other sources of nitrogen are present. However, under certain conditions the metabolism of nitrate in soils by bacteria takes on an added complication. If a soil becomes anaerobic, for example through water logging, some species of soil bacteria can begin to 'breathe' nitrate. Essentially, this NITRATE RESPIRATION process is an alternative to oxygen-respiration enabling the bacteria to sustain energy generation for growth. It also consumes the costly fertilisers added to soils. What then if the bacterium can do both NITRATE ASSIMILATION and NITRATE RESPIRATION? Many species of soil denitrifying bacterium can indeed do just this and so provide what amounts to a double whammy for the availability of nitrate to crops. What is not yet clear many species of soil denitrifying bacteria is how the NITRATE ASSIMILATION process is regulated and.to what extent the molecular systems involved in NITRATE ASSIMILATION overlap with those involved in NITRATE RESPIRATION. In this research programme we will address these questions using a soil bacterium called Paracoccus denitrificans. For many years this species of bacterium has been a model organism for the study of the nitrate respiration as part of a process called denitrification in which the soluble soil nitrate is converted to nitrogen gas and so lost to the atmosphere. The importance of this species as a model organism led to the United States Department of Energy providing the funds to enable the sequencing of the DNA of it's genome. This has allowed us to identify the genes that encode a nitrate assimilation system, which we term the Nas system. The study of this Nas system provides the focus for this research programme.
氮是地球上所有形式的生物生命所必需的关键元素之一,因为它是DNA和蛋白质的基石。因此,所有生物生命形式都必须具有从环境中捕获氮并将其纳入重要细胞成分的机制。这个过程被称为氮同化。处于食物链顶端的生命形式,如人类,从他们摄入和消化的植物和动物中提取的有机氮源中吸收氮。然而,在食物链中较低的一些生命形式,如细菌,可以从简单的无机形式(如氮气、硝酸盐或铵)以及简单的有机形式(如氨基酸)中吸收氮。许多农业土壤含有丰富的硝酸盐,因为农民使用这些土壤来促进高产作物的生产,而土壤的径流反过来又使河流、湖泊和海洋富含硝酸盐。这就提供了一个氮源,可以导致细菌的增殖,细菌可以利用硝酸盐作为氮源进行同化。在农业领域,将硝酸盐转移到土壤微生物的“食物来源”,而不是转移到作物上,这在经济上是浪费的。然而,一些估计表明,这种情况可能正在大规模发生。因此,及时寻求一个学术知识库,从而有可能制定减少这些损失的战略。这需要了解土壤细菌在硝酸盐同化过程中将硝酸盐中的氮转化为细胞氮的分子机制,以及当存在其他氮源时该过程被调节的方法。然而,在某些条件下,细菌对土壤中硝酸盐的代谢具有额外的复杂性。如果土壤变得厌氧,例如通过积水,一些土壤细菌可以开始“呼吸”硝酸盐。从本质上讲,这种硝酸盐呼吸过程是氧呼吸的替代方法,使细菌能够维持生长所需的能量产生。它还消耗了添加到土壤中的昂贵肥料。如果细菌既能吸收硝酸盐又能呼吸硝酸盐呢?许多种类的土壤反硝化细菌确实可以做到这一点,因此为作物提供硝酸盐的可用性提供了双重打击。目前尚不清楚的是,许多土壤反硝化细菌是如何调节硝酸盐同化过程的。参与硝酸盐同化的分子系统与参与硝酸盐呼吸的分子系统在多大程度上重叠。在这个研究项目中,我们将使用一种叫做反硝化副球菌的土壤细菌来解决这些问题。多年来,这种细菌一直是研究硝酸盐呼吸作用的模式生物,它是反硝化过程的一部分,在反硝化过程中,可溶性土壤硝酸盐转化为氮气,然后消失在大气中。这种物种作为一种模式生物的重要性促使美国能源部提供资金,以使其基因组的DNA测序成为可能。这使我们能够识别编码硝酸盐同化系统的基因,我们称之为Nas系统。该Nas系统的研究是本课题研究的重点。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.
  • DOI:
    10.1016/bs.ampbs.2016.02.001
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Javier Torregrosa-Crespo;R. M. Martínez-Espinosa;J. Esclapez;V. Bautista;C. Pire;M. Camacho;David J. Richardson;M. Bonete
  • 通讯作者:
    Javier Torregrosa-Crespo;R. M. Martínez-Espinosa;J. Esclapez;V. Bautista;C. Pire;M. Camacho;David J. Richardson;M. Bonete
Transcriptional and translational adaptation to aerobic nitrate anabolism in the denitrifier Paracoccus denitrificans.
  • DOI:
    10.1042/bcj20170115
  • 发表时间:
    2017-05-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luque-Almagro VM;Manso I;Sullivan MJ;Rowley G;Ferguson SJ;Moreno-Vivián C;Richardson DJ;Gates AJ;Roldán MD
  • 通讯作者:
    Roldán MD
Control of bacterial nitrate assimilation by stabilization of G-quadruplex DNA.
Nitrogen oxyanion-dependent dissociation of a two-component complex that regulates bacterial nitrate assimilation.
  • DOI:
    10.1074/jbc.m113.459032
  • 发表时间:
    2013-10-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luque-Almagro VM;Lyall VJ;Ferguson SJ;Roldán MD;Richardson DJ;Gates AJ
  • 通讯作者:
    Gates AJ
Electrocatalytic reduction of nitrate and selenate by NapAB.
NapAB 电催化还原硝酸盐和硒酸盐。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Richardson其他文献

Stimuli‐Responsive Cyclopenta[ef]heptalenes: Synthesis and Optical Properties
刺激响应性环戊[ef]庚烯:合成和光学性质
  • DOI:
    10.1002/ejoc.201500059
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    E. G. Zadeh;A. Woodward;David Richardson;M. Bondar;K. Belfield
  • 通讯作者:
    K. Belfield
Connection between Heart Failure, Diabetes, and Overall Mortality in Individuals with Suicidal Ideation: Findings from a Nationally Representative Study
  • DOI:
    10.1016/j.ahj.2021.10.179
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sri Banerjee;David Richardson
  • 通讯作者:
    David Richardson
Introduction to the proceedings of the 10th International Symbiosis Congress (Lyon, France)
  • DOI:
    10.1007/s13199-023-00898-9
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Abdelaziz Heddi;Marc-André Selosse;David Richardson
  • 通讯作者:
    David Richardson
Comparative analysis of neutrophil and monocyte epigenomes
中性粒细胞和单核细胞表观基因组的比较分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Rico;J. Martens;K. Downes;Enrique Carrillo;V. Pancaldi;A. Breschi;David Richardson;S. Heath;Sadia Saeed;M. Frontini;Lu Chen;S. Watt;F. Müller;Laura Clarke;H. Kerstens;S. Wilder;Emilio Palumbo;S. Djebali;E. Raineri;A. Merkel;A. Esteve;M. Sultan;Alena van Bommel;M. Gut;M. Yaspo;M. Rubio;J. M. Fernández;A. Attwood;Victor de la Torre;R. Royo;Stamatina Fragkogianni;J. Gelpí;D. Torrents;V. Iotchkova;C. Logie;A. Aghajanirefah;Abhishek A. Singh;E. Janssen;Kim Berentsen;W. Erber;A. Rendon;Myrto A. Kostadima;R. Loos;Martijn van der Ent;A. Kaan;N. Sharifi;D. Paul;D. Ifrim;J. Quintin;M. Love;D. Pisano;Frances Burden;Nicola S. Foad;Samantha Farrow;D. Zerbino;I. Dunham;T. Kuijpers;H. Lehrach;Thomas Lengauer;Paul Bertone;M. Netea;M. Vingron;S. Beck;Paul Flicek;I. Gut;W. Ouwehand;C. Bock;N. Soranzo;R. Guigó;A. Valencia;H. Stunnenberg
  • 通讯作者:
    H. Stunnenberg
NOAA fisheries research geared towards climate-ready living marine resource management in the northeast United States
NOAA 渔业研究旨在美国东北部适应气候变化的海洋生物资源管理
  • DOI:
    10.1371/journal.pclm.0000323
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vincent Saba;Diane L. Borggaard;Joseph C. Caracappa;R. C. Chambers;Patricia M. Clay;L. Colburn;J. Deroba;G. DePiper;H. du Pontavice;Paula Fratantoni;Marianne Ferguson;S. Gaichas;Sean Hayes;Kimberly Hyde;Michael Johnson;John Kocik;Ellen Keane;D. Kircheis;S. Large;Andrew Lipsky;S. Lucey;Anna Mercer;S. Meseck;Timothy J. Miller;R. Morse;C. Orphanides;Julie Reichert;David Richardson;Jeff Smith;Ronald Vogel;Bruce Vogt;Gary H. Wikfors
  • 通讯作者:
    Gary H. Wikfors

David Richardson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Richardson', 18)}}的其他基金

Collaborative Research: MRA: On thin ice- implications of shorter winters for the future of freshwater phytoplankton phenology and function
合作研究:MRA:薄冰——较短冬季对淡水浮游植物物候和功能未来的影响
  • 批准号:
    2306898
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Continuing Grant
Gut microbiome variation, fitness and senescence within a natural vertebrate population
自然脊椎动物群体中肠道微生物组的变异、适应性和衰老
  • 批准号:
    NE/S010939/1
  • 财政年份:
    2020
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
AirGuide Photonics
空气引导光子学
  • 批准号:
    EP/P030181/1
  • 财政年份:
    2017
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
ENERGY RESILIENT MANUFACTURING 2: SPATIO-TEMPORAL BEAM TAILORED FIBRE LASERS FOR ENERGY RESILIENT MANUFACTURING
能源弹性制造 2:用于能源弹性制造的时空光束定制光纤激光器
  • 批准号:
    EP/P012248/1
  • 财政年份:
    2016
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
SPATIO-TEMPORAL BEAM TAILORED FIBRE LASERS FOR ENERGY RESILIENT MANUFACTURING
用于能源弹性制造的时空光束定制光纤激光器
  • 批准号:
    EP/M014029/1
  • 财政年份:
    2015
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
The molecular interface of microbe-mineral electron transfer
微生物-矿物电子转移的分子界面
  • 批准号:
    BB/L023733/1
  • 财政年份:
    2014
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
Transgenerational impacts on senescence: quantitative genetics of cellular and organismal ageing in the wild
跨代对衰老的影响:野外细胞和有机体衰老的定量遗传学
  • 批准号:
    NE/K005502/1
  • 财政年份:
    2013
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
University of East Anglia NERC Impact Acceleration Account Phase 2
东安格利亚大学 NERC 影响力加速账户第二阶段
  • 批准号:
    NE/L013401/1
  • 财政年份:
    2013
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
Exploiting the bandwidth potential of multimode optical fibres
开发多模光纤的带宽潜力
  • 批准号:
    EP/J008591/1
  • 财政年份:
    2012
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant
University of East Anglia - Equipment Account
东安格利亚大学 - 设备帐户
  • 批准号:
    EP/J021431/1
  • 财政年份:
    2012
  • 资助金额:
    $ 42.69万
  • 项目类别:
    Research Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the role of nonessential amino acid metabolism in diabetic skin wounds
阐明非必需氨基酸代谢在糖尿病皮肤伤口中的作用
  • 批准号:
    10607579
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating the role of the contralesional corticoreticulospinal tract for lower limb function after stroke.
阐明对侧皮质脊髓束对中风后下肢功能的作用。
  • 批准号:
    10667897
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating the contribution of amyloidogenic APP processing to AD-relevant impaired synaptic protein turnover
阐明淀粉样蛋白生成 APP 加工对 AD 相关突触蛋白周转受损的影响
  • 批准号:
    10538032
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating the functions of red blood cell factors in malaria parasite invasion
阐明红细胞因子在疟原虫入侵中的功能
  • 批准号:
    10736484
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating the relevance of BARD1-PLK1 interaction in PDAC and response to therapy
阐明 PDAC 中 BARD1-PLK1 相互作用与治疗反应的相关性
  • 批准号:
    10729693
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating links between vestibular function, cognition, and sensorimotor behavior
阐明前庭功能、认知和感觉运动行为之间的联系
  • 批准号:
    10721613
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating Olfactory Epithelial Anti-Viral Responses in Persistent Post-Viral Olfactory Dysfunction
阐明持续性病毒后嗅觉功能障碍中嗅觉上皮的抗病毒反应
  • 批准号:
    10351227
  • 财政年份:
    2022
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating ACLP-dependent signaling pathways in the adipose tissue stromal-vascular niche
阐明脂肪组织基质血管生态位中 ACLP 依赖性信号通路
  • 批准号:
    10418018
  • 财政年份:
    2022
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating cancer-intrinsic mechanisms of perineural invasion in pancreatic cancer
阐明胰腺癌神经周围浸润的癌症内在机制
  • 批准号:
    10647832
  • 财政年份:
    2022
  • 资助金额:
    $ 42.69万
  • 项目类别:
Elucidating the Quality Control Pathways that Cope with Mutant Ribosomal RNA in Mammalian Cells
阐明应对哺乳动物细胞中突变核糖体 RNA 的质量控制途径
  • 批准号:
    10463494
  • 财政年份:
    2022
  • 资助金额:
    $ 42.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了