PROTEIN STRUCTURE-FUNCTION IN GASTRIC MICROBIAL PATHOGENESIS

胃微生物发病机制中的蛋白质结构-功能

基本信息

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. A number of pathogens such as H. pylori, Campylobacter sp. and Bacillus anthracis can cause serious and even lethal disease states in humans by invading the host through the highly acidic environment of the stomach. While the post-colonization defense mechanism used by individual microorganisms to survive this hostile environment may be known well characterized, it is not as clear how the organisms survive the 'transit time' necessary to establish those conditions favorable to disease. Indeed, it is well known that several of the microorganisms can be killed by brief exposure to HCl at pH ? 4.0. During the transit time, proteins could be exposed to an HCl rich, acidic environment for significant periods of time These conditions are more than sufficient to inactivate many proteins. This raises the question as to how these organisms survive the transit time without necessarily benefiting from 'pre-incubations' that are normally required for a strong acid tolerance response. Long-term goals of the research are to study the mechanism by which proteins maintain their biological activity in highly acidic environments. We propose to use the periplasmic redox protein systems of the genus Thiobacillus as a model system to study protein structure-function and stability in low pH environments. We choose this model because; 1) it avoids the need to work directly with pathogens, 2) several species within the Thiobacillus genus are capable of growth at pH ranging as low as 0.8, 3) the redox reactions offer easy to assay biological activities, and 4) the conditions experienced by the thiobacilli during growth on sulfur containing substrates are a good representation of the pH of the gastric environment. Hence the information gained in this study should be directly applicable to the pathogenic species.
该子项目是利用NIH/NCRR资助的中心赠款提供的资源的许多研究子项目之一。子项目和研究者(PI)可能从另一个NIH来源获得主要资金,因此可以在其他CRISP条目中表示。所列机构为中心机构,不一定为研究者机构。许多病原体如H.幽门螺杆菌、弯曲杆菌属和炭疽杆菌可通过胃的高酸性环境侵入宿主而在人类中引起严重甚至致命的疾病状态。虽然个体微生物在这种恶劣环境中生存所使用的殖民后防御机制可能是已知的,但尚不清楚生物体如何在建立有利于疾病的条件所必需的“过渡时间”中生存。事实上,众所周知,几种微生物可以通过短暂暴露于pH?4.0.在运输过程中,蛋白质可能会暴露在富含HCl的酸性环境中很长一段时间,这些条件足以使许多蛋白质溶解。这就提出了一个问题,这些生物体如何生存的运输时间,而不一定受益于'预孵育',通常需要一个强的耐酸性反应。这项研究的长期目标是研究蛋白质在高酸性环境中保持其生物活性的机制。我们建议使用硫杆菌属的周质氧化还原蛋白系统作为模型系统来研究蛋白质的结构-功能和在低pH环境中的稳定性。我们选择这个模式,是因为1)它避免了直接与病原体一起工作的需要,2)硫杆菌属内的几个物种能够在低至0.8的pH范围内生长,3)氧化还原反应提供了容易测定生物活性的方法,和4)硫杆菌在含硫底物上生长期间经历的条件是胃环境pH的良好代表。因此,本研究中获得的信息应直接适用于致病种属。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholaus H Hilliard其他文献

Nicholaus H Hilliard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholaus H Hilliard', 18)}}的其他基金

PROTEIN STRUCTURE-FUNCTION IN GASTRIC MICROBIAL PATHOGENESIS
胃微生物发病机制中的蛋白质结构-功能
  • 批准号:
    7960221
  • 财政年份:
    2009
  • 资助金额:
    $ 6.3万
  • 项目类别:
PROTEIN STRUCTURE-FUNCTION IN GASTRIC MICROBIAL PATHOGENESIS
胃微生物发病机制中的蛋白质结构-功能
  • 批准号:
    7720446
  • 财政年份:
    2008
  • 资助金额:
    $ 6.3万
  • 项目类别:
PROTEIN STRUCTURE-FUNCTION IN GASTRIC MICROBIAL PATHOGENESIS
胃微生物发病机制中的蛋白质结构-功能
  • 批准号:
    7610356
  • 财政年份:
    2007
  • 资助金额:
    $ 6.3万
  • 项目类别:
PROTEIN STRUCTURE-FUNCTION IN GASTRIC MICROBIAL PATHOGENESIS
胃微生物发病机制中的蛋白质结构-功能
  • 批准号:
    7170963
  • 财政年份:
    2005
  • 资助金额:
    $ 6.3万
  • 项目类别:
BIOOXIDATION OF SULFUR IN MICROBIAL MODEL SYSTEMS
微生物模型系统中硫的生物氧化
  • 批准号:
    6972149
  • 财政年份:
    2004
  • 资助金额:
    $ 6.3万
  • 项目类别:
CORE--EASTERN NEW MEXICO U FACILITY
核心--新墨西哥州东部U工厂
  • 批准号:
    6972142
  • 财政年份:
    2004
  • 资助金额:
    $ 6.3万
  • 项目类别:

相似海外基金

Development of on-chip membrane protein preparation method and structure/function analysis of giant membrane proteins
片上膜蛋白制备方法开发及巨膜蛋白结构/功能分析
  • 批准号:
    23K04926
  • 财政年份:
    2023
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deep transformers for integrating protein sequence, structure and interaction data to predict function
用于整合蛋白质序列、结构和相互作用数据以预测功能的深度转换器
  • 批准号:
    2308699
  • 财政年份:
    2023
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Continuing Grant
How to build a protein factory? Linking structure and function of the plant endoplasmic reticulum
如何建造蛋白质工厂?
  • 批准号:
    BB/X006417/1
  • 财政年份:
    2023
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Research Grant
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
  • 批准号:
    10712082
  • 财政年份:
    2023
  • 资助金额:
    $ 6.3万
  • 项目类别:
IIBR Research Methods: Probing the structure, abundance, dynamics, and function of protein complexes within their cellular environment
IIBR 研究方法:探测细胞环境中蛋白质复合物的结构、丰度、动态和功能
  • 批准号:
    2327468
  • 财政年份:
    2023
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Continuing Grant
Understanding how membrane composition directs membrane protein structure and function
了解膜成分如何指导膜蛋白结构和功能
  • 批准号:
    10630518
  • 财政年份:
    2023
  • 资助金额:
    $ 6.3万
  • 项目类别:
The in cell structure and function of an intrinsically disordered plant stress protein
本质无序植物应激蛋白的细胞内结构和功能
  • 批准号:
    RGPIN-2016-04253
  • 财政年份:
    2022
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Discovery Grants Program - Individual
Oat protein as a sustainable protein source: Structure-function characterization and utilization in novel applications
燕麦蛋白作为可持续的蛋白质来源:结构功能表征和新应用中的利用
  • 批准号:
    DGECR-2022-00304
  • 财政年份:
    2022
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Discovery Launch Supplement
Identification and analysis of the structure-function relationship of eukaryotic glycolipids involved in protein sorting and insertion into membanes
参与蛋白质分选和插入膜的真核糖脂的结构-功能关系的鉴定和分析
  • 批准号:
    22K19262
  • 财政年份:
    2022
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structure-function investigations of protein partnerships governing neuronal signaling
控制神经信号传导的蛋白质伙伴关系的结构功能研究
  • 批准号:
    RGPIN-2018-05838
  • 财政年份:
    2022
  • 资助金额:
    $ 6.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了