Novel Machine Learning Methods for Analysis of MALDI-TOF Mass Spectrometry Data
用于分析 MALDI-TOF 质谱数据的新型机器学习方法
基本信息
- 批准号:7367013
- 负责人:
- 金额:$ 7.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAnalytical BiochemistryBioinformaticsBiological MarkersCalibrationCirrhosisClinicalCodeCollectionComputing MethodologiesDataDetectionDevelopmentDiagnosisDisease ProgressionEarly DiagnosisEnsureFigs - dietaryGenderGenerationsGoalsIndividualInflammatory ResponseLaboratoriesLeadLiquid ChromatographyLogistic RegressionsMALDI-TOF Mass SpectrometryMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasuresMedical SurveillanceMethodsModelingMolecular WeightMonitorNewly DiagnosedOdds RatioPatient MonitoringPatientsPeptidesPerformancePopulationPreparationPrimary carcinoma of the liver cellsProteinsRateResearchResidenciesRiskRosaRunningRuralSamplingScreening procedureSensitivity and SpecificitySerumSerum MarkersSmoking StatusSpectrometrySpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStagingStandards of Weights and MeasuresSurvival RateTestingTimeVariantViralVirus Diseasesbasedrinkingimprovedinnovationmass spectrometermortalitynoveloncologyparticlepreventprotein aminoacid sequencetandem mass spectrometrytool
项目摘要
DESCRIPTION (provided by applicant):
Hepatocellular carcinoma (HCC) is a common cancer worldwide with as many as 500,000 new cases each year. Between 1981 to 1998, the 5-year patient survival rate with HCC only rose from 2% to 5%. This poor survival rate is in part related to the diagnosis of HCC at advanced stages, where effective therapies are lacking. Early detection of HCC improves patient survival. Patients with cirrhosis are typically the ones to develop HCC. Hence, monitoring cirrhotic patients can potentially decrease the cancer-related mortality rate. The poor sensitivity and specificity of currently available tools has prevented widespread implementation of HCC surveillance. Therefore, additional serum markers that provide higher sensitivity and specificity are needed to improve the detection rate of early HCC. The goal of this collaborative project is to identify a panel of serum biomarkers for early diagnosis of HCC. The long-term goal is to find and validate markers that would help identify HCC at a treatable stage in high-risk population of cirrhotic patients. This project will lead to the development of innovative mass spectral data preprocessing and biomarker selection methods that for the identification of candidate biomarkers specific to HCC by using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) of low-molecular-weight (LMW) enriched sera. The specific aims of the project are the following: Aim 1: To develop algorithms for improved MALDI-TOF mass spectral data preprocessing including outlier screening, binning, smoothing, baseline correction, normalization, peak detection, and peak calibration. The proposed algorithms will enable us to reduce run-to-run variability in replicate spectra of a standard serum and to enhance the prediction accuracy in distinguishing HCC patients from cirrhotic patients or healthy individuals. Aim 2: To develop a novel algorithm that is superior to currently used biomarker selection methods by combining two popular machine learning methods, particle swarm optimization (PSO) and support vector machines (SVMs). The proposed algorithm will be used to identify HCC-specific markers from the preprocessed MALDI-TOF spectra. To avoid confounding effects, peaks will be removed prior to biomarker selection if they are associated with viral infection or covariates such as age, gender, smoking status, drinking status, and residency (urban or rural). From the remaining peaks, a small set of candidate biomarkers that accurately distinguishes HCC patients from cirrhotic patients will be identified. The capability of the algorithm to identify a small set of markers with high sensitivity and specificity is critical for establishment of clinical tests. Additionally, the algorithm will identify markers that distinguish various pairs (normal vs. cirrhosis, normal vs. HCC, cirrhosis vs. early-stage HCC, and cirrhosis vs. late-stage HCC). This will enable us to isolate HCC- specific markers and identify disease progression markers. Furthermore, the peptides represented by the selected candidate biomarkers will be identified. Finally, the performance of the algorithm will be compared with existing methods.
描述(由申请人提供):
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-class alignment of LC-MS data using probabilistic-based mixture regression models.
使用基于概率的混合回归模型对 LC-MS 数据进行多类比对。
- DOI:10.1109/iembs.2008.4650109
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Befekadu,GetachewK;Tadesse,MahletG;Hathout,Yetrib;Ressom,HabtomW
- 通讯作者:Ressom,HabtomW
Identification of N-glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data.
- DOI:10.1021/pr900397n
- 发表时间:2010-01
- 期刊:
- 影响因子:4.4
- 作者:Tang, Zhiqun;Varghese, Rency S.;Bekesova, Slavka;Loffredo, Christopher A.;Hamid, Mohamed Abdul;Kyselova, Zuzana;Mechref, Yehia;Novotny, Milos V.;Goldman, Radoslav;Ressom, Habtom W.
- 通讯作者:Ressom, Habtom W.
Classification algorithms for phenotype prediction in genomics and proteomics.
- DOI:10.2741/2712
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:H. Ressom;R. Varghese;Zhen Zhang;J. Xuan;R. Clarke
- 通讯作者:H. Ressom;R. Varghese;Zhen Zhang;J. Xuan;R. Clarke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Habtom W Ressom其他文献
Habtom W Ressom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Habtom W Ressom', 18)}}的其他基金
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10705675 - 财政年份:2021
- 资助金额:
$ 7.76万 - 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10491700 - 财政年份:2021
- 资助金额:
$ 7.76万 - 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10581892 - 财政年份:2021
- 资助金额:
$ 7.76万 - 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10206465 - 财政年份:2021
- 资助金额:
$ 7.76万 - 项目类别:
Systems Metabolomics for HCC Biomarker Discovery
HCC 生物标志物发现的系统代谢组学
- 批准号:
9894874 - 财政年份:2017
- 资助金额:
$ 7.76万 - 项目类别:
Integrative Analysis of GC-MS and LC-MS Data for Biomarker Discovery
GC-MS 和 LC-MS 数据综合分析以发现生物标志物
- 批准号:
10393981 - 财政年份:2017
- 资助金额:
$ 7.76万 - 项目类别:
New Tools for Metabolite Identification and Quantitation
代谢物鉴定和定量的新工具
- 批准号:
9430743 - 财政年份:2017
- 资助金额:
$ 7.76万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9115112 - 财政年份:2015
- 资助金额:
$ 7.76万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9302701 - 财政年份:2015
- 资助金额:
$ 7.76万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9267193 - 财政年份:2015
- 资助金额:
$ 7.76万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.76万 - 项目类别:
Research Grant