Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
基本信息
- 批准号:10705675
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:BiologicalBiological MarkersBiological databasesComputing MethodologiesControl GroupsCoupledDataDevelopmentDiseaseEvaluationFutureGenomicsGoalsIndividualLibrariesLiquid ChromatographyMachine LearningMass FragmentographyMass Spectrum AnalysisMethodsMultiomic DataNetwork-basedOutcomePatternPerformancePlayProteomicsResearchResourcesRoleSamplingSystemSystems BiologyValidationbiomarker discoverybiomarker selectionbiomarker validationcandidate markercandidate selectioncomputerized toolscomputing resourcesdata integrationglycoproteomicshigh throughput analysisimprovedinnovationmachine learning methodmetabolomicsmultiple omicsnetwork modelsprogramssmall moleculestatistical and machine learningtranscriptomicsvalidation studies
项目摘要
PROJECT SUMMARY
Metabolomics offers a comprehensive analysis of thousands of small molecules in biological samples. It can
play an indispensable role in the growing systems biology approaches to unravel the relationships between
metabolites and diseases. Liquid chromatography coupled to mass spectrometry (LC-MS) and gas
chromatography coupled to mass spectrometry (GC-MS) have been used for high-throughput analysis of
thousands of metabolites. However, the potential values of many disease-associated metabolites discovered by
using these platforms have been inadequately explored in systems biology approaches for biomarker discovery
due to lack of computational tools and resources to: (1) accurately determine the identity of most of the
metabolites; (2) investigate the rewiring interactions among the metabolites due to diseases; and (3) integrate
metabolite profiles with those from other omics studies to evaluate the relationships between the metabolites
and the diseases at the systems level. Partly due to these limitations, poor generalizability of previously identified
metabolite biomarker candidates has been observed, especially when they are evaluated through independent
platforms and validation sets. Therefore, new methods are sought to find more generalizable metabolite
biomarker candidates. The goal of this research program is to fill the gaps in metabolite identification and multi-
omics integration by using systems metabolomics approaches that will enhance the role of metabolomics in
systems biology approaches for biomarker discovery. Specifically, the proposed research program will utilize
multiple resources (biological databases, spectral libraries, etc.) and innovative statistical, machine learning, and
network-based methods for: (1) developing a comprehensive workflow for ranking putative metabolite IDs; (2)
differential analysis of metabolite profiles based on changes in the levels of individual metabolites and pairwise
interactions in disease vs. control groups; and (3) integration of metabolomics data with genomics,
transcriptomics, proteomics, and glycoproteomics data to identify highly promising metabolite biomarker
candidates. Our recent progress has led to acquisition of multi-omics data and development of computational
tools for metabolite identification and integrative analysis. The performance of the proposed metabolite
identification workflow in ranking putative metabolite IDs will be evaluated through experimental methods using
reference compounds. The differential and integrative analysis methods will be used for selection of candidate
biomarkers via multi-omics data acquired in biomarker discovery studies. The selected candidates will be
evaluated by targeted quantitation using independent samples and platforms compared to those used for
discovery. The outcomes of these experimental evaluations will be used not only to help refine the computational
methods but also to identify promising biomarker candidates. In summary, the proposed research program seeks
to capitalize on the power of network modeling, machine learning, and multi-omics data integration to improve
the ability to find disease biomarkers that are likely to succeed in future large-scale biomarker validation studies.
项目总结
代谢组学提供了对生物样本中数千个小分子的全面分析。它可以
在不断发展的系统生物学方法中扮演着不可或缺的角色,以解开
代谢物和疾病。液-质联用(LC-MS)和气相联用
色质联用(GC-MS)已被用于高通量分析
成千上万的代谢物。然而,许多与疾病相关的代谢物的潜在价值
利用这些平台在系统生物学方法中发现生物标记物的探索还不充分。
由于缺乏计算工具和资源:(1)准确确定大多数
代谢物;(2)研究由于疾病引起的代谢物之间的重新连接相互作用;以及(3)整合
与其他组学研究中的代谢物图谱比较,以评估代谢物之间的关系
以及系统层面的疾病。部分由于这些限制,以前确定的可概括性较差
已经观察到代谢物生物标记物候选,特别是当它们通过独立的
平台和验证集。因此,人们寻求新的方法来寻找更具普遍性的代谢物。
生物标记物候选者。这一研究计划的目标是填补代谢物鉴定和多因素分析方面的空白。
通过使用系统代谢组学方法进行组学集成,这将增强代谢组学在
生物标记物发现的系统生物学方法。具体地说,拟议的研究计划将利用
多种资源(生物数据库、光谱库等)以及创新的统计、机器学习和
基于网络的方法:(1)开发用于对推定的代谢物ID进行排序的全面工作流程;(2)
基于个体代谢物水平变化和成对变化的代谢物谱差异分析
疾病组与对照组之间的相互作用;以及(3)代谢组学数据与基因组学的整合,
转录组学、蛋白质组学和糖蛋白组学数据用于鉴定极具前景的代谢物生物标记物
候选人。我们最近的进展导致了多组学数据的获取和计算技术的发展
代谢物鉴定和综合分析工具。建议的代谢物的性能
对推定的代谢物ID进行排序的鉴定工作流程将通过实验方法进行评估,使用
参比化合物。候选人的选择将采用差异性分析和综合分析的方法
通过生物标记物发现研究中获得的多组学数据获得的生物标记物。入选的候选人将是
通过使用独立样本和平台进行有针对性的量化评估,与用于
发现号。这些实验评估的结果将不仅用于帮助改进计算
方法,也是为了确定有前途的生物标记物候选。总而言之,拟议的研究计划旨在
利用网络建模、机器学习和多组学数据集成的强大功能来改进
发现疾病生物标记物的能力,这些疾病生物标记物可能在未来的大规模生物标记物验证研究中取得成功。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Terpolymeric platform with enhanced hydrophilicity via cysteic acid for serum intact glycopeptide analysis.
- DOI:10.1007/s00604-022-05343-0
- 发表时间:2022-07-13
- 期刊:
- 影响因子:5.7
- 作者:Sajid, Muhammad Salman;Saleem, Shafaq;Jabeen, Fahmida;Najam-ul-Haq, Muhammad;Ressom, Habtom W.
- 通讯作者:Ressom, Habtom W.
Human serum N-glycome profiling via the newly developed asparagine immobilized cellulose/polymer nanohybrid.
- DOI:10.1002/jssc.202200179
- 发表时间:2022-12
- 期刊:
- 影响因子:3.1
- 作者:Sajid, Muhammad Salman;Saleem, Muhammad Nakash;Jabeen, Fahmida;Saleem, Shafaq;Iqbal, Sabeen;Habib, Shahid;Ashiq, Muhammad Naeem;Ressom, Habtom W.;Najam-ul-Haq, Muhammad
- 通讯作者:Najam-ul-Haq, Muhammad
Biomarker Discovery for Hepatocellular Carcinoma in Patients with Liver Cirrhosis Using Untargeted Metabolomics and Lipidomics Studies.
- DOI:10.3390/metabo13101047
- 发表时间:2023-10-02
- 期刊:
- 影响因子:4.1
- 作者:Rashid MM;Varghese RS;Ding Y;Ressom HW
- 通讯作者:Ressom HW
Convolutional Neural Network-Based Compound Fingerprint Prediction for Metabolite Annotation.
- DOI:10.3390/metabo12070605
- 发表时间:2022-06-29
- 期刊:
- 影响因子:4.1
- 作者:
- 通讯作者:
A Bayesian two-step integrative procedure incorporating prior knowledge for the identification of miRNA-mRNAs involved in hepatocellular carcinoma.
- DOI:10.1109/embc48229.2022.9871330
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Habtom W Ressom其他文献
Habtom W Ressom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Habtom W Ressom', 18)}}的其他基金
Systems Metabolomics for HCC Biomarker Discovery
HCC 生物标志物发现的系统代谢组学
- 批准号:
9894874 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Integrative Analysis of GC-MS and LC-MS Data for Biomarker Discovery
GC-MS 和 LC-MS 数据综合分析以发现生物标志物
- 批准号:
10393981 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
New Tools for Metabolite Identification and Quantitation
代谢物鉴定和定量的新工具
- 批准号:
9430743 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9115112 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9302701 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9267193 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Analysis of LC-MS data to identify peptide and glycan biomarkers for hepatocellul
分析 LC-MS 数据以鉴定肝细胞的肽和聚糖生物标志物
- 批准号:
7899433 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Studentship