Intelligent Aids for Proteomic Data Mining
蛋白质组数据挖掘的智能辅助工具
基本信息
- 批准号:7460715
- 负责人:
- 金额:$ 13.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAutomobile DrivingBayesian MethodBiological MarkersBiological Neural NetworksClassClassificationDataData AnalysesData SetDetectionDevelopmentDiseaseEducationGenetic ProgrammingGoalsInstructionKnowledgeLearningLinkMachine LearningMass Spectrum AnalysisMentorsMethodsMiningPathway AnalysisPatientsPeptidesPreventionProblem SolvingProteinsProteomeProteomicsPurposeReadingResearchResearch PersonnelResearch Project GrantsSpectrometryStructureSystemTechniquesTechnologyTestingTodayTraininganalytical methodbasebiomedical informaticsdata miningdesignheuristicsnovelpredictive modelingsymposiumtandem mass spectrometrytool
项目摘要
DESCRIPTION (provided by applicant): Primary purpose of this proposal is to provide the applicant with the means and structures for achieving two goals; (1) to develop intelligent computational aids for mining proteomic data accumulating from high throughput techniques like SELDI-TOF mass spectrometry; and (2) the long-term goal is to gain independence as a biomedical informatics researcher by developing methodological expertise in Bayesian methods and proteomic technologies. Applicant will obtain further instruction in probabilistic methods of data analysis; and she will receive education on proteomic technologies that are driving today's proteome research. Training will be provided through formal coursework, directed readings, seminars and conferences in addition to research directed by excellent mentors.
Applicant's research project involves a novel combination of techniques for use in proteomic data analysis. Previous research has included the use of techniques such as genetic algorithms and neural networks for analysis of proteomic data. These techniques were not explicitly designed to take into account background and prior knowledge. Hypothesis of this project is that background knowledge and machine learning techniques can positively influence the selection of appropriate biomarkers from proteomic data, enabling efficient and accurate analysis of massive datasets arising from proteomic profiling studies. Therefore, this project will satisfy four aims: (1) development of a wrapper-based machine learning tool; (2) augment the tool with prior knowledge such as heuristic rules and relationships in the data; (3) use these features along with de-identified patient information as input to classification systems; and (4) evaluate existing techniques for interpreting tandem mass spectrometry (MS-MS or MS/MS) data, and propose, implement and evaluate a Bayesian method for identification of peptides and proteins indicated by the MS-MS spectrum.
描述(由申请人提供):本提案的主要目的是为申请人提供实现两个目标的方法和结构:(1)开发智能计算辅助工具,用于挖掘从高通量技术(如SELDI-TOF质谱法)积累的蛋白质组数据;及(2)长-长期目标是通过发展贝叶斯方法和蛋白质组学技术的方法学专业知识,获得作为生物医学信息学研究人员的独立性。申请人将获得数据分析概率方法的进一步指导;她将接受有关推动当今蛋白质组研究的蛋白质组技术的教育。除了由优秀导师指导的研究外,还将通过正式课程、指导性阅读、研讨会和会议提供培训。
申请人的研究项目涉及用于蛋白质组学数据分析的新技术组合。以前的研究包括使用遗传算法和神经网络等技术来分析蛋白质组数据。这些技术并没有明确地考虑到背景和先验知识。该项目的假设是,背景知识和机器学习技术可以积极影响从蛋白质组数据中选择合适的生物标志物,从而能够有效和准确地分析蛋白质组学分析研究产生的大量数据集。因此,该项目将满足四个目标:(1)开发基于包装器的机器学习工具;(2)用先验知识(如数据中的启发式规则和关系)增强该工具;(3)将这些特征沿着去识别的患者信息作为分类系统的输入;以及(4)评估用于解释串联质谱(MS-MS或MS/MS)数据的现有技术,并提出、实施和评估用于鉴定由MS-MS谱指示的肽和蛋白质的贝叶斯方法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics.
- DOI:10.1002/mus.21683
- 发表时间:2010-07
- 期刊:
- 影响因子:3.4
- 作者:Ryberg, Henrik;An, Jiyan;Darko, Samuel;Lustgarten, Jonathan Llyle;Jaffa, Matt;Gopalakrishnan, Vanathi;Lacomis, David;Cudkowicz, Merit;Bowser, Robert
- 通讯作者:Bowser, Robert
Context-sensitive markov models for peptide scoring and identification from tandem mass spectrometry.
用于肽评分和串联质谱鉴定的上下文敏感马尔可夫模型。
- DOI:10.1089/omi.2012.0073
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Grover,Himanshu;Wallstrom,Garrick;Wu,ChristineC;Gopalakrishnan,Vanathi
- 通讯作者:Gopalakrishnan,Vanathi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanathi Gopalakrishnan其他文献
Vanathi Gopalakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vanathi Gopalakrishnan', 18)}}的其他基金
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
- 批准号:
8711497 - 财政年份:2012
- 资助金额:
$ 13.27万 - 项目类别:
Transfer Rule Learning with Functional Mapping for Integrative Modeling of Panomics Data
具有功能映射的转移规则学习用于全景数据的集成建模
- 批准号:
9246538 - 财政年份:2012
- 资助金额:
$ 13.27万 - 项目类别:
Transfer Rule Learning with Functional Mapping for Integrative Modeling of Panomics Data
具有功能映射的转移规则学习用于全景数据的集成建模
- 批准号:
9111473 - 财政年份:2012
- 资助金额:
$ 13.27万 - 项目类别:
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
- 批准号:
8549840 - 财政年份:2012
- 资助金额:
$ 13.27万 - 项目类别:
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
- 批准号:
8373065 - 财政年份:2012
- 资助金额:
$ 13.27万 - 项目类别:
MARKOVIAN MODELS FOR PROTEIN IDENTIFICATION FROM TANDEM MASS SPECTROMETRY
串联质谱蛋白质鉴定的马尔可夫模型
- 批准号:
8364375 - 财政年份:2011
- 资助金额:
$ 13.27万 - 项目类别:
Bayesian Rule Learning Methods for Disease Prediction and Biomarker Discovery
用于疾病预测和生物标志物发现的贝叶斯规则学习方法
- 批准号:
8318619 - 财政年份:2011
- 资助金额:
$ 13.27万 - 项目类别:
Bayesian Rule Learning Methods for Disease Prediction and Biomarker Discovery
用于疾病预测和生物标志物发现的贝叶斯规则学习方法
- 批准号:
8024941 - 财政年份:2011
- 资助金额:
$ 13.27万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 13.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 13.27万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 13.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 13.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)