Bayesian Rule Learning Methods for Disease Prediction and Biomarker Discovery

用于疾病预测和生物标志物发现的贝叶斯规则学习方法

基本信息

项目摘要

DESCRIPTION (provided by applicant): The problem: High-throughput biomedical data from biomarker profiling studies aimed at early detection of diseases like lung cancer are accumulating rapidly. Although many popular machine learning methods have been utilized for analysis of such high-dimensional datasets, no single method has consistently outperformed others. Moreover, scientists have the need to simultaneously address two related tasks: disease prediction and biomarker discovery, using the same sets of data and tools. One way, as undertaken in this project, to address this need is to find the most accurate classifier for the disease from a given set of profiles and present the discriminative markers used in that model to the scientist for further verification. The large space of possible models coupled with the small sample size of the data make it hard to accurately estimate predictive accuracy. The solution: This project will develop, evaluate and refine novel Bayesian Rule Learning (BRL) methods that are algorithmically efficient, result in parsimonious models and accurately estimate predictive uncertainty from sparse biomedical datasets. BRL methods utilize a Bayesian score to evaluate rule models, thereby quantifying the uncertainty in the validity of the rule itself. This novel technique that combines the mathematical rigor of Bayesian network learning with rule-based modeling opens up a hitherto underexplored area of fundamental research in informatics involving such hybrid methodologies. Rules enable modular representation of knowledge and collaboration with scientists, as it is easier to present the model and extract markers both visually and computationally. Rule-based inference is also simpler and more tractable. The Bayesian approach enables prior knowledge to be incorporated and evaluated in a continual fashion with a human in the loop. The latter is very important for refinement of both tools and models. The specific aims: This project will test the hypothesis that the BRL methods developed and extended herein produce more accurate and parsimonious models for disease state prediction than other state-of-the-art machine learning methods. This project evaluates BRL methods and models using existing proteomic datasets for three diverse diseases - rare, neurodegenerative Amyotrophic Lateral Sclerosis (ALS), and the two most common cancers in the world, lung and breast cancers. Experimental verification will be performed using a new set of retrospectively collected breast cancer sera samples to evaluate model generalizability. The significance: This project will produce: (1) a novel biomedical data mining tool for analyzing data from biomarker profiling studies of any disease, (2) methodological insights into the applicability of this tool and current machine learning methods for such tasks, and (3) new data for research on the early detection of breast cancer. It has potential to help develop new diagnostic tests for early detection of ALS, lung and breast cancers and lays a firm foundation for building modeling frameworks that can incorporate both prior knowledge and data to provide the technological capability for combining evidence from multiple, heterogeneous sources.
描述(由申请人提供):

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vanathi Gopalakrishnan其他文献

Vanathi Gopalakrishnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vanathi Gopalakrishnan', 18)}}的其他基金

Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
  • 批准号:
    8711497
  • 财政年份:
    2012
  • 资助金额:
    $ 46.61万
  • 项目类别:
Transfer Rule Learning with Functional Mapping for Integrative Modeling of Panomics Data
具有功能映射的转移规则学习用于全景数据的集成建模
  • 批准号:
    9246538
  • 财政年份:
    2012
  • 资助金额:
    $ 46.61万
  • 项目类别:
Transfer Rule Learning with Functional Mapping for Integrative Modeling of Panomics Data
具有功能映射的转移规则学习用于全景数据的集成建模
  • 批准号:
    9111473
  • 财政年份:
    2012
  • 资助金额:
    $ 46.61万
  • 项目类别:
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
  • 批准号:
    8549840
  • 财政年份:
    2012
  • 资助金额:
    $ 46.61万
  • 项目类别:
Transfer Rule Learning for Knowledge Based Biomarker Discovery and Predictive Bio
基于知识的生物标志物发现和预测生物的转移规则学习
  • 批准号:
    8373065
  • 财政年份:
    2012
  • 资助金额:
    $ 46.61万
  • 项目类别:
MARKOVIAN MODELS FOR PROTEIN IDENTIFICATION FROM TANDEM MASS SPECTROMETRY
串联质谱蛋白质鉴定的马尔可夫模型
  • 批准号:
    8364375
  • 财政年份:
    2011
  • 资助金额:
    $ 46.61万
  • 项目类别:
Bayesian Rule Learning Methods for Disease Prediction and Biomarker Discovery
用于疾病预测和生物标志物发现的贝叶斯规则学习方法
  • 批准号:
    8024941
  • 财政年份:
    2011
  • 资助金额:
    $ 46.61万
  • 项目类别:
Intelligent Aids for Proteomic Data Mining
蛋白质组数据挖掘的智能辅助工具
  • 批准号:
    7089794
  • 财政年份:
    2004
  • 资助金额:
    $ 46.61万
  • 项目类别:
Intelligent Aids for Proteomic Data Mining
蛋白质组数据挖掘的智能辅助工具
  • 批准号:
    6811846
  • 财政年份:
    2004
  • 资助金额:
    $ 46.61万
  • 项目类别:
Intelligent Aids for Proteomic Data Mining
蛋白质组数据挖掘的智能辅助工具
  • 批准号:
    7460715
  • 财政年份:
    2004
  • 资助金额:
    $ 46.61万
  • 项目类别:

相似海外基金

Amyotrophic Lateral Sclerosis: treating the circuit behind the disease
肌萎缩侧索硬化症:治疗疾病背后的回路
  • 批准号:
    MR/Y014901/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.61万
  • 项目类别:
    Research Grant
Dysregulation of RNA processing as a driver of motor neuron dysfunction in Amyotrophic Lateral Sclerosis
RNA 加工失调是肌萎缩侧索硬化症运动神经元功能障碍的驱动因素
  • 批准号:
    MR/Y014286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.61万
  • 项目类别:
    Research Grant
Fasciculation IN Amyotrophic Lateral Sclerosis Using MUMRI (FINALSUM)
使用 MUMRI 治疗肌萎缩侧索硬化症的肌束颤动 (FINALSUM)
  • 批准号:
    MR/Y503502/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.61万
  • 项目类别:
    Research Grant
I-Corps: Developing A Blood-Based Biomarker for the Detection and Monitoring of Amyotrophic Lateral Sclerosis
I-Corps:开发一种基于血液的生物标志物,用于检测和监测肌萎缩侧索硬化症
  • 批准号:
    2317745
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
    Standard Grant
Targeted immunotherapy for amyotrophic lateral sclerosis and frontotemporal dementia
肌萎缩侧索硬化症和额颞叶痴呆的靶向免疫治疗
  • 批准号:
    10759808
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
Resolving the Role of Neuronal STING in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
解决神经元 STING 在肌萎缩侧索硬化症和额颞叶痴呆中的作用
  • 批准号:
    10606865
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
  • 批准号:
    10696512
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
Metrics for Brain Controlled Communication: A comprehensive review of clinical outcome assessments for communication brain computer interfaces in amyotrophic lateral sclerosis
脑控制通信指标:肌萎缩侧索硬化症通信脑机接口临床结果评估的全面综述
  • 批准号:
    10848139
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
The biochemical stratification of amyotrophic lateral sclerosis
肌萎缩侧索硬化症的生化分层
  • 批准号:
    MR/Y001095/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
    Fellowship
The Gut Microbiota as a Contributor to Sexual Dimorphism in Amyotrophic Lateral Sclerosis
肠道微生物群是肌萎缩侧索硬化症性别二态性的一个促成因素
  • 批准号:
    488892
  • 财政年份:
    2023
  • 资助金额:
    $ 46.61万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了