A New Class of Mechanistic Risk Prediction Models for Cancer Treatment Outcomes
一类新的癌症治疗结果机械风险预测模型
基本信息
- 批准号:7359365
- 负责人:
- 金额:$ 17.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAftercareBayesian MethodBiochemicalBiologicalBiological MarkersBirthCancer PatientCellsCessation of lifeCharacteristicsClassClinicalComputer AssistedComputersDataDecision MakingDependenceDetectionDevelopmentDiagnosisDiseaseDisease regressionDisease-Free SurvivalEstimation TechniquesFoundationsFutureIndividualMalignant neoplasm of prostateMedical centerMethodologyMethodsModelingNatureOutcomePatientsPhysiciansPreventionProbabilityProceduresProcessRateRecurrenceRegression AnalysisResearchRiskStatistical MethodsStatistical ModelsStructureSupport SystemTechniquesTestingTimeTreatment outcomeTumor-Associated ProcessUniversitiesbasecancer recurrencecancer therapycancer typedisorder later incidence preventionfollow-uphazardneoplastic cellnovelpredictive modelingresponsetooltreatment effecttumortumor progression
项目摘要
DESCRIPTION (provided by applicant): The general objective of this study is to develop a statistical framework to lay a foundation for building an intelligent clinical support system with predictions of potential outcomes under different scenarios of prostate cancer treatment. In this proposal, combining statistical methods with cancer treatment mechanism, we propose to develop a new class of statistical regression models for predicting the probability and the timing of tumor recurrence by effectively taking account of information on treatment characteristics and post-treatment individual biomarkers. The new model is derived from an iterated cell birth and death process, mimicking the biological mechanism of tumor cells after treatments, and thereby invokes biological considerations in statistical model building and treatment outcome prediction. Statistically speaking, the new model allows for both proportional and non-proportional hazards structures, incorporates a cure rate, and accommodates non-homogeneous treatment effects on short-term cancer recurrence prevention and long-term biochemical disease-free survival. The proposed model extends the cure rate models by allowing for a more general dependence on individual covariates, and it is of semiparametric nature: the nonparametric component involves the cancer progression time distribution and the parametric component involves treatment characteristics, post-treatment biomarkers, and other significant covariates. We propose nonparametric smoothing techniques for estimation of the progression time distribution, and likelihood and Bayesian methods for parametric estimation. The methodology will be applied to clinical follow-up data of prostate cancer patients amassed at The University of Rochester Medical Center. The novelty of this project is that the new model is essentially based on biological mechanism of tumor response to treatment and utilizes strength of statistical modeling techniques for risk prediction. In this R21 application, we aim to develop the new model using statistical techniques, and if successful, an R01 proposal will be submitted in the future to fully develop the prediction model with application to construct and validate a prediction computer support system to assist physicians in making informed clinical decisions for adaptive cancer treatment strategies. Motivated by stochastic modeling of post-treatment tumor development, the project proposes to develop a new class of statistical regression models for predicting the time- dependent risk of prostate cancer recurrence.
描述(申请人提供):这项研究的总体目标是开发一个统计框架,为建立一个智能临床支持系统奠定基础,该系统可以预测前列腺癌治疗的不同情景下的潜在结果。在这项建议中,我们建议将统计学方法与癌症治疗机制相结合,通过有效地考虑治疗特征和治疗后个体生物标志物的信息,开发一类新的统计回归模型来预测肿瘤复发的概率和时间。新的模型是从一个迭代的细胞出生和死亡过程中衍生出来的,模拟了治疗后肿瘤细胞的生物学机制,从而在统计模型建立和治疗结果预测中调用了生物学因素。从统计学上讲,新模型既考虑了比例风险结构,也考虑了非比例风险结构,纳入了治愈率,并考虑了短期癌症复发预防和长期生化无病生存的非均匀治疗效果。该模型通过允许对单个协变量的更一般的依赖来扩展治愈率模型,并且具有半参数性质:非参数分量涉及癌症进展时间分布,而参数分量涉及治疗特征、治疗后生物标记物和其他重要协变量。我们提出了估计级数时间分布的非参数平滑方法,以及参数估计的似然和贝叶斯方法。该方法将应用于罗切斯特大学医学中心收集的前列腺癌患者的临床随访数据。该项目的创新之处在于,新模型本质上是基于肿瘤治疗反应的生物学机制,并利用统计建模技术的力量进行风险预测。在这项R21应用中,我们的目标是使用统计技术开发新模型,如果成功,将在未来提交R01提案,以全面开发预测模型,并应用构建和验证预测计算机支持系统,以帮助医生做出明智的临床决策,以适应癌症治疗策略。受治疗后肿瘤发展的随机建模的启发,该项目建议开发一类新的统计回归模型来预测前列腺癌复发的时间相关风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LI-SHAN HUANG其他文献
LI-SHAN HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LI-SHAN HUANG', 18)}}的其他基金
A New Class of Mechanistic Risk Prediction Models for Cancer Treatment Outcomes
一类新的癌症治疗结果机械风险预测模型
- 批准号:
7583878 - 财政年份:2008
- 资助金额:
$ 17.08万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 17.08万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 17.08万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 17.08万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 17.08万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 17.08万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 17.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 17.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 17.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 17.08万 - 项目类别:














{{item.name}}会员




