NanoProbes; Development of novel probes for biological submicroscopic multicolour imaging

纳米探针;

基本信息

  • 批准号:
    BB/F005016/1
  • 负责人:
  • 金额:
    $ 52.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Genomic and proteomic programmes increasingly drive our understanding of complex biological systems; advances in protein science allow us to understand protein form and function in ever increasing detail whilst nanotechnology research programmes are developing tools to study and manipulate systems on the length scale of 1-100nm. The current 'blind spot' is our inability to combine genomic and proteomic data with understandings of molecular mechanism and biochemical pathways in living systems. For instance, we may know the atomic structure of a protein, understand its protein or ligand interactions, how and where it assembles into multi-component structures within the cell. However, we are unable to image any of these processes directly in living cells with the necessary resolution to give a complete and satisfactory understanding of how things work. Recent forums of leading microscopists both in Europe and the UK have highlighted this issue and also the pressing needs to achieve higher resolution multicolour live cell microscopy. While new optical techniques are constantly evolving there still remains a critical gap between what is possible using electron sources and optically based methods. To meet this challenge we propose the development of our novel probes that will eventually result in a live cell, multicolour/component imaging within an Electron Microscope, making an apparent Fluorescence electron microscope (FEM). By combining recent technological advances in both optical and electron imaging with the development of our novel luminescent probes, we believe that this approach will create a technology that will far surpass any other known technique currently being developed and provide the step change required in microscopy to start true multicolour sub-light resolution imaging with few constraints and address this major limitation in biology. This would be a ground-breaking advance in biological imaging. We recognised that any new technology trying to enable sub-light/diffraction limited nanometre resolution imaging is limited by currently available fluorescent/luminescent probes that have all been designed for photoluminescent imaging. Our approach is to encapsulate, or chemically passivate, specially engineered nano-sized (in the region of 10nm) cathodoluminescent materials such as the material used for P43 (in colour TV screen phosphors) for cell labelling. These probes will have the added advantage that they will also be suitable for standard photon excitation and exhibit far better properties compared to most other fluorochromes due to their high electron beam and photo-stability, very narrow emission peaks and inert nature. Taking the advantage of conventional optical microscopy and the use of different luminescent probes to study multiple cellular components in a live environment and the resolution that can be achieved using a scanning electron beam, we will remove the current 'blind spot' in studying living systems. This will have a far-reaching impact on biological and medical research with the elucidation of fine detailed particle maps and the ability to study receptor organisation and interactions. Such interactions are known to play key roles in cell signalling, recognition and other vital cellular functions that are critical for healthy cell function and disease, yet little is understood due to our current inability to visualise live samples. As well as the biological applications, we believe our new luminescent probe technology will impact widely on many other fields, such as polymer research, surface science, micro and nanotechnology. Our probes and FEM will therefore have the widest possible application across many academic and industrial disciplines.
基因组和蛋白质组计划越来越多地推动我们对复杂生物系统的理解;蛋白质科学的进步使我们能够越来越详细地了解蛋白质的形式和功能,而纳米技术研究计划正在开发工具来研究和操纵1- 100纳米长度尺度的系统。目前的“盲点”是我们无法将联合收割机基因组和蛋白质组数据与对生命系统中分子机制和生化途径的理解结合起来。例如,我们可能知道蛋白质的原子结构,了解其蛋白质或配体相互作用,以及它如何以及在哪里组装成细胞内的多组分结构。然而,我们无法以必要的分辨率直接在活细胞中对这些过程中的任何一个进行成像,以完整和令人满意地理解事物如何工作。最近在欧洲和英国的领先的显微镜学家论坛强调了这个问题,也迫切需要实现更高的分辨率多色活细胞显微镜。虽然新的光学技术在不断发展,但在使用电子源和基于光学的方法之间仍然存在着关键的差距。为了应对这一挑战,我们提出了我们的新型探针的发展,这将最终导致活细胞,多色/电子显微镜内的组件成像,使明显的荧光电子显微镜(FEM)。通过将光学和电子成像的最新技术进展与我们新型发光探针的开发相结合,我们相信这种方法将创造一种技术,该技术将远远超过目前正在开发的任何其他已知技术,并提供显微镜所需的步骤变化,以开始真正的多色亚光分辨率成像,几乎没有限制,并解决生物学中的这一主要限制。这将是生物成像领域的突破性进展。我们认识到,任何试图实现亚光/衍射限制的纳米分辨率成像的新技术都受到目前可用的荧光/发光探针的限制,这些探针都是为光致发光成像而设计的。我们的方法是封装,或化学钝化,特别设计的纳米尺寸(在10纳米的区域)阴极射线发光材料,如用于P43(彩色电视屏幕荧光粉)的材料,用于细胞标记。这些探针将具有额外的优点,即它们也将适合于标准光子激发,并且由于它们的高电子束和光稳定性、非常窄的发射峰和惰性性质,与大多数其他荧光染料相比表现出更好的性质。利用传统的光学显微镜和使用不同的发光探针来研究活体环境中的多种细胞成分,以及使用扫描电子束可以实现的分辨率,我们将消除目前研究生命系统的“盲点”。这将对生物学和医学研究产生深远的影响,阐明精细的颗粒图和研究受体组织和相互作用的能力。已知这种相互作用在细胞信号传导、识别和其他重要细胞功能中发挥关键作用,这些功能对于健康细胞功能和疾病至关重要,但由于我们目前无法可视化活体样本,人们对此知之甚少。除了生物应用外,我们相信我们的新荧光探针技术将对许多其他领域产生广泛的影响,如聚合物研究,表面科学,微纳米技术。因此,我们的探头和FEM将在许多学术和工业学科中获得最广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Silver其他文献

Trans gene complementation of I-E subregion antigens.
I-E亚区抗原的转基因互补。
  • DOI:
    10.4049/jimmunol.123.3.1423
  • 发表时间:
    1979
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Jack Silver
  • 通讯作者:
    Jack Silver
Luminescence in europium-doped titania: Part II. High concentration range of Eu3+
  • DOI:
    10.1557/jmr.2002.0367
  • 发表时间:
    2002-10-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    James Ovenstone;Philip J. Titler;Robert Withnall;Jack Silver
  • 通讯作者:
    Jack Silver
Genetic mapping of the component chains of Ia antigens
  • DOI:
    10.1007/bf01561444
  • 发表时间:
    1979-12-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Jack Silver;William A. Russell
  • 通讯作者:
    William A. Russell
Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+
Eu2掺杂Sr1-xCaxAl2O4的晶体结构、光致发光和阴极发光
  • DOI:
    10.1364/ome.9.002175
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Liping Yu;D. den Engelsen;Jürgen Gorobez;G. Fern;T. Ireland;Chris Frampton;Jack Silver
  • 通讯作者:
    Jack Silver
Peptide map comparisons of similar serologically defined HLA-DR antigens isolated from different lymphoblastoid cell lines.
从不同淋巴母细胞系分离的类似血清学定义的 HLA-DR 抗原的肽图比较。
  • DOI:
  • 发表时间:
    1982
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    S. Goyert;Richard A. Gatti;Jack Silver
  • 通讯作者:
    Jack Silver

Jack Silver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Silver', 18)}}的其他基金

Plastic Packaging Recycling using Intelligent Separation technologies for Materials (PRISM)
使用材料智能分离技术 (PRISM) 进行塑料包装回收
  • 批准号:
    EP/N508974/1
  • 财政年份:
    2015
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Grant
Enhanced solar energy harvesting in dye sensitized solar cells using nanophosphors and nano-structured optics (CONVERTED)
使用纳米磷光体和纳米结构光学器件增强染料敏化太阳能电池的太阳能收集(转换)
  • 批准号:
    EP/J50015X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Grant
Plastic UV Radiation Protection Operating by Stokes Emission (PURPOSE PROJECT)
通过斯托克斯发射操作的塑料紫外线辐射防护(目的项目)
  • 批准号:
    TS/G000271/1
  • 财政年份:
    2008
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Grant
AC Electroluminescence: Optimisation of Phosphors
交流电致发光:荧光粉的优化
  • 批准号:
    GR/S96319/02
  • 财政年份:
    2006
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Grant
Cell Specific Differentiation Genes
细胞特异性分化基因
  • 批准号:
    8315291
  • 财政年份:
    1984
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Continuing grant
Travel to Attend: Logic Colloquium 77, Wroclaw, Poland, Aug 1-12, 1977
前往参加:第 77 届逻辑研讨会,波兰弗罗茨瓦夫,1977 年 8 月 1 日至 12 日
  • 批准号:
    7717978
  • 财政年份:
    1977
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
  • 批准号:
    2314685
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Cooperative Agreement
Development of a novel cancer immunotherapy model targeting human macrophages
开发针对人类巨噬细胞的新型癌症免疫治疗模型
  • 批准号:
    24K18516
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Investment Accelerator
Analysis and quality control of novel mixed cell population for therapeutic development
用于治疗开发的新型混合细胞群的分析和质量控制
  • 批准号:
    10089851
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Collaborative R&D
Development of novel acyclic chelators for gallium-68 and scandium-44 radiometals used in PET
开发用于 PET 的镓 68 和钪 44 放射性金属的新型无环螯合剂
  • 批准号:
    EP/V028073/2
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Grant
Application of the virus-like particle (VLP) technology in the development of anti-tick vaccine, utilizing novel salivary proteins from Haemaphysalis longicornis ticks.
利用长角血蜱的新型唾液蛋白,应用病毒样颗粒(VLP)技术开发抗蜱疫苗。
  • 批准号:
    24K18027
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel 'extended labour induction' balloon to improve safety of labour induction: Prototype development and preliminary clinical study
新型“延长引产”球囊可提高引产安全性:原型开发和初步临床研究
  • 批准号:
    MR/Y503423/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
    Research Grant
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
  • 批准号:
    10748776
  • 财政年份:
    2024
  • 资助金额:
    $ 52.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了