Probabilistic Control of Functional Electrical Stimulation
功能性电刺激的概率控制
基本信息
- 批准号:7471566
- 负责人:
- 金额:$ 20.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-15 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelAnimalsAttentionBehaviorBehavioralBrainCommunicationComplexComputer InterfaceComputing MethodologiesDailyDevelopmentEffectivenessElectric StimulationElectrodesEmployee StrikesFingersForelimbGoalsHandHand functionsHumanImplantImplanted ElectrodesIndividualJointsLinkMacaca mulattaMethodsModelingMonkeysMotorMovementMuscleOrthopedicsParalysedPatientsPatternPhysiologic pulsePublic HealthPulse takingQuadriplegiaRangeSelf-control as a personality traitSignal TransductionSkeletal MuscleSpecific qualifier valueSpinal cord injuryStrokeSurfaceSystemTestingTimeTrainingUpper ExtremityUpper armUpper limb movementbasedesigndesiregraspimprovedlimb movementneuroprosthesisneurosurgeryrestorationrobotic device
项目摘要
DESCRIPTION (provided by applicant): Functional electrical stimulation involves artificial activation of paralyzed muscles with implanted electrodes and has been used successfully to improve the ability of quadriplegics to perform movements important for daily activities. The range of motor behaviors that can be generated by functional electrical stimulation, however, is limited to a relatively small set of preprogrammed movements such as hand grasp and release. A broader range of movements has not been implemented because of the substantial challenge associated with identifying the patterns of muscle stimulation needed to elicit specified movements. We plan to use a probabilistic algorithm to predict the patterns of muscle activity associated with a wide range of upper limb movements based on hand trajectory information. The predicted patterns of muscle activity will then be transformed into amplitude-modulated trains of pulses and used to drive muscle stimulators in order to evoke movements in temporarily paralyzed animals. The evoked movements are quantitatively compared to the desired movements to evaluate the overall effectiveness of this approach. Ultimately, this probabilistic method could serve as the requisite interface between brain-derived trajectory information and existing functional electrical stimulation systems to realize a self-contained and self-controlled upper limb neuroprosthetic system. Such an integrated and flexible system would greatly increase movement capability, and independence, in paralyzed individuals. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop a new method to artificially activate and control paralyzed muscles with electrodes implanted in muscles. This effort will contribute to the restoration of voluntary limb movements in individuals paralyzed because of spinal cord injury or stroke.
描述(由申请人提供):功能性电刺激涉及使用植入电极人工激活瘫痪肌肉,并已成功用于改善四肢瘫痪患者进行日常活动重要运动的能力。然而,功能性电刺激可以产生的运动行为的范围仅限于相对较小的一组预编程运动,例如手抓握和释放。由于与识别引起指定运动所需的肌肉刺激模式相关的实质性挑战,尚未实施更广泛的运动。我们计划使用概率算法来预测与基于手轨迹信息的大范围上肢运动相关的肌肉活动模式。然后,预测的肌肉活动模式将被转换成调幅脉冲串,并用于驱动肌肉刺激器,以唤起暂时瘫痪动物的运动。诱发的运动进行定量比较所需的运动,以评估这种方法的整体效果。最终,这种概率方法可以作为脑源性轨迹信息和现有功能性电刺激系统之间的必要接口,以实现自包含和自控制的上肢神经假体系统。这样一个集成和灵活的系统将大大提高瘫痪患者的运动能力和独立性。公共卫生相关性:该项目的目标是开发一种新方法,通过植入肌肉的电极人工激活和控制瘫痪的肌肉。这项工作将有助于恢复因脊髓损伤或中风而瘫痪的个人的自愿肢体运动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW J FUGLEVAND其他文献
ANDREW J FUGLEVAND的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW J FUGLEVAND', 18)}}的其他基金
Physiological Function of Persistent Inward Currents in Motor Neurons
运动神经元持续内向电流的生理功能
- 批准号:
10663030 - 财政年份:2023
- 资助金额:
$ 20.85万 - 项目类别:
Hands-free Control of an Assistive Robotic Arm for High Level Paralysis
用于高度瘫痪的辅助机械臂的免提控制
- 批准号:
10741948 - 财政年份:2023
- 资助金额:
$ 20.85万 - 项目类别:
Machine-learning based control of functional electrical stimulation
基于机器学习的功能性电刺激控制
- 批准号:
10319903 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Physiological significance of persistent inward currents in motor neurons
运动神经元持续内向电流的生理意义
- 批准号:
8613509 - 财政年份:2013
- 资助金额:
$ 20.85万 - 项目类别:
Physiological significance of persistent inward currents in motor neurons
运动神经元持续内向电流的生理意义
- 批准号:
8502114 - 财政年份:2013
- 资助金额:
$ 20.85万 - 项目类别:
Physiological significance of persistent inward currents in motor neurons
运动神经元持续内向电流的生理意义
- 批准号:
9015482 - 财政年份:2013
- 资助金额:
$ 20.85万 - 项目类别:
Probabilistic Control of Functional Electrical Stimulation
功能性电刺激的概率控制
- 批准号:
8113507 - 财政年份:2008
- 资助金额:
$ 20.85万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant