Probabilistic Control of Functional Electrical Stimulation

功能性电刺激的概率控制

基本信息

  • 批准号:
    8113507
  • 负责人:
  • 金额:
    $ 6.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-03-15 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Functional electrical stimulation involves artificial activation of paralyzed muscles with implanted electrodes and has been used successfully to improve the ability of quadriplegics to perform movements important for daily activities. The range of motor behaviors that can be generated by functional electrical stimulation, however, is limited to a relatively small set of preprogrammed movements such as hand grasp and release. A broader range of movements has not been implemented because of the substantial challenge associated with identifying the patterns of muscle stimulation needed to elicit specified movements. We plan to use a probabilistic algorithm to predict the patterns of muscle activity associated with a wide range of upper limb movements based on hand trajectory information. The predicted patterns of muscle activity will then be transformed into amplitude-modulated trains of pulses and used to drive muscle stimulators in order to evoke movements in temporarily paralyzed animals. The evoked movements are quantitatively compared to the desired movements to evaluate the overall effectiveness of this approach. Ultimately, this probabilistic method could serve as the requisite interface between brain-derived trajectory information and existing functional electrical stimulation systems to realize a self-contained and self-controlled upper limb neuroprosthetic system. Such an integrated and flexible system would greatly increase movement capability, and independence, in paralyzed individuals. The goal of this project is to develop a new method to artificially activate and control paralyzed muscles with electrodes implanted in muscles. This effort will contribute to the restoration of voluntary limb movements in individuals paralyzed because of spinal cord injury or stroke. The goal of this project is to develop a new method to artificially activate and control paralyzed muscles with electrodes implanted in muscles. This effort will contribute to the restoration of voluntary limb movements in individuals paralyzed because of spinal cord injury or stroke.
描述(由申请人提供):功能性电刺激涉及通过植入电极人工激活瘫痪肌肉,并已成功用于提高四肢瘫痪者进行日常活动重要运动的能力。然而,功能性电刺激可以产生的运动行为范围仅限于相对较小的一组预编程运动,例如手的抓握和释放。由于识别引发特定运动所需的肌肉刺激模式存在巨大挑战,因此尚未实施更广泛的运动。我们计划使用概率算法根据手部轨迹信息来预测与各种上肢运动相关的肌肉活动模式。然后,预测的肌肉活动模式将被转化为调幅脉冲序列,并用于驱动肌肉刺激器,以引起暂时瘫痪的动物的运动。将诱发的运动与所需的运动进行定量比较,以评估该方法的整体有效性。最终,这种概率方法可以作为脑源轨迹信息和现有功能性电刺激系统之间必要的接口,以实现独立且自我控制的上肢神经假体系统。这种集成且灵活的系统将大大提高瘫痪者的运动能力和独立性。该项目的目标是开发一种新方法,通过植入肌肉的电极来人工激活和控制瘫痪的肌肉。这项努力将有助于恢复因脊髓损伤或中风而瘫痪的个体的自主肢体运动。该项目的目标是开发一种新方法来人工激活和控制 通过在肌肉中植入电极来使肌肉瘫痪。这项努力将有助于 恢复脊髓瘫痪患者的自主肢体运动 受伤或中风。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mimicking muscle activity with electrical stimulation.
  • DOI:
    10.1088/1741-2560/8/1/016009
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Johnson LA;Fuglevand AJ
  • 通讯作者:
    Fuglevand AJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW J FUGLEVAND其他文献

ANDREW J FUGLEVAND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW J FUGLEVAND', 18)}}的其他基金

Physiological Function of Persistent Inward Currents in Motor Neurons
运动神经元持续内向电流的生理功能
  • 批准号:
    10663030
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
Hands-free Control of an Assistive Robotic Arm for High Level Paralysis
用于高度瘫痪的辅助机械臂的免提控制
  • 批准号:
    10741948
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
Machine-learning based control of functional electrical stimulation
基于机器学习的功能性电刺激控制
  • 批准号:
    10319903
  • 财政年份:
    2018
  • 资助金额:
    $ 6.78万
  • 项目类别:
Physiological significance of persistent inward currents in motor neurons
运动神经元持续内向电流的生理意义
  • 批准号:
    8613509
  • 财政年份:
    2013
  • 资助金额:
    $ 6.78万
  • 项目类别:
Physiological significance of persistent inward currents in motor neurons
运动神经元持续内向电流的生理意义
  • 批准号:
    8502114
  • 财政年份:
    2013
  • 资助金额:
    $ 6.78万
  • 项目类别:
Physiological significance of persistent inward currents in motor neurons
运动神经元持续内向电流的生理意义
  • 批准号:
    9015482
  • 财政年份:
    2013
  • 资助金额:
    $ 6.78万
  • 项目类别:
Synaptic Integration in Motor Neurons
运动神经元中的突触整合
  • 批准号:
    8270425
  • 财政年份:
    2011
  • 资助金额:
    $ 6.78万
  • 项目类别:
Probabilistic Control of Functional Electrical Stimulation
功能性电刺激的概率控制
  • 批准号:
    7471566
  • 财政年份:
    2008
  • 资助金额:
    $ 6.78万
  • 项目类别:
NEURAL AND MUSCULAR CONTROL OF FINGER MOVEMENTS
手指运动的神经和肌肉控制
  • 批准号:
    6351901
  • 财政年份:
    2000
  • 资助金额:
    $ 6.78万
  • 项目类别:
NEURAL AND MUSCULAR CONTROL OF FINGER MOVEMENTS
手指运动的神经和肌肉控制
  • 批准号:
    6629325
  • 财政年份:
    2000
  • 资助金额:
    $ 6.78万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了