Midwest Center for Membrane Protein Structural Dynamics
中西部膜蛋白结构动力学中心
基本信息
- 批准号:7498602
- 负责人:
- 金额:$ 7.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAcetylcholineActive SitesAddressAlgorithmsAmino AcidsAmyloid beta-Protein PrecursorAnisotropyAntibodiesApplied GeneticsArchaeaArchitectureAreaArtsAssesAttentionAwardBacteriaBacteriorhodopsinsBaculovirusesBehaviorBindingBinding ProteinsBiochemicalBiochemical ReactionBiochemistryBiogenesisBiologicalBiological ProcessBiologyBiomassBiophysicsCatalysisCell NucleusCellsChargeChemicalsChemistryChicagoChildhoodChromosome PairingClassClassificationCodeCollaborationsCommunicationCommunitiesComplementComplexComputational algorithmComputing MethodologiesConditionConsensusContractsCopperCore FacilityCouplesCouplingCrystallizationCrystallographyCytokine ReceptorsDNADNA SequenceDNA Sequence RearrangementDataDatabasesDecompression SicknessDenmarkDetergentsDeteriorationDevelopmentDisciplineDiseaseDisease AssociationDrosophila genusDrug DesignDyesEcologyEcosystemElectron Spin Resonance SpectroscopyElectron TransportElectronsElectrophysiology (science)ElementsEnd PointEndopeptidasesEndpoint DeterminationEnergy TransferEnergy-Generating ResourcesEngineeringEnvironmentEquilibriumEventEvolutionFamilyFigs - dietaryFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferFluorescence SpectroscopyFogsFosteringFourier TransformFree EnergyFreedomFundingGated Ion ChannelGene AmplificationGene ExpressionGene ProteinsGenerationsGeneticGenomeGenomicsGoalsGrantGrowthHealthHeartHeavy MetalsHistidineHomeostasisHormonesHourHumanHuman GeneticsHuman GenomeHybridsHydrolysisIllinoisImageIndividualInfectionInsectaInstitutesInstitutionIntegral Membrane ProteinInternetInvestigationInvestmentsIon ChannelIonsIsotope LabelingKidneyKnockout MiceKnowledgeLabelLaboratoriesLanthanoid Series ElementsLeadLeadershipLengthLibrariesLibrary ServicesLifeLiftingLigand BindingLigandsLinkLiposomesLiquid substanceLocationMacromolecular ComplexesMagnetic ResonanceMammalian CellMapsMeasurableMeasurementMeasuresMediatingMembraneMembrane BiologyMembrane PotentialsMembrane ProteinsMembrane Structure and FunctionMeta-AnalysisMetagenomicsMetalsMethionineMethodologyMethodsMicroscopicModelingModificationMolecularMolecular BiologyMolecular ChaperonesMolecular ConformationMolecular GeneticsMolecular MachinesMolecular WeightMolecular and Cellular BiologyMonitorMotionMovementMultienzyme ComplexesMuscleMutagenesisMyosin ATPaseNMR SpectroscopyNa(+)-K(+)-Exchanging ATPaseNatureNerveNeurobiologyNeurotransmitter ReceptorNoiseNuclearNuclear Magnetic ResonanceNuclear ReceptorsNumbersOligonucleotidesOocytesOperative Surgical ProceduresOptical MethodsOpticsOrganismOxygenPTEN genePanthera oncaParticipantPathway interactionsPediatricsPeptide HydrolasesPeptidesPerformancePhage DisplayPharmacologyPhasePhosphatidylinositolsPhosphoric Monoester HydrolasesPhysical ChemistryPhysicsPhysiologic pulsePhysiological ProcessesPhysiologyPlanetsPlayPolymerase Chain ReactionPositioning AttributePost-Translational Protein ProcessingPotassium ChannelPreparationPrincipal InvestigatorProcessProductionProlactin ReceptorPropertyProtein AnalysisProtein BiochemistryProtein BiosynthesisProtein ConformationProtein DynamicsProtein EngineeringProtein RegionProteinsProteolysisProteomePsychological TechniquesPublishingPulse takingPumpPurple MembranePurposeRangeRateReactionReagentReceptor ActivationRegulationRelative (related person)RelaxationReporterReportingResearchResearch InfrastructureResearch InstituteResearch PersonnelResolutionResource AllocationResourcesRetinalRhodopsinRoentgen RaysRoleSamplingScaffolding ProteinScienceScreening procedureSecondary toSecureSeriesSerineServicesShapesSideSignal PathwaySignal TransductionSimulateSiteSite-Directed MutagenesisSkeletal MuscleSolidSolutionsSolventsSomatotropinSourceSpecific qualifier valueSpectroscopy, Fourier Transform InfraredSpectrum AnalysisSpeedSpin LabelsStagingStandards of Weights and MeasuresStatistical MechanicsStimulusStreamStructural ProteinStructureSupport of ResearchSurfaceSynapsesSynaptic TransmissionSystemSystems BiologyTechniquesTechnologyTerbiumTertiary Protein StructureTestingTimeTravelUnited States National Institutes of HealthUniversitiesVertebral columnWaterWeightWorkX-Ray CrystallographyYeastsamyloid precursor protein processinganticancer researchaqueousbasecell growthcell motilitychemical additionchemical bondchemical synthesiscombinatorialcomputer studiescomputerized toolsconceptconformational conversioncovalent bondcytokinedaydensitydesigndesign and constructionelectric fieldelectrical measurementelectron donorexpectationexperiencefeedingimprovedin vivoinnovationinsightinterestligand gated channelluminescence resonance energy transfermacromoleculemagnetic fieldmembermetagenomic sequencingmicrobial communitymicroorganismmilligrammillisecondmolecular dynamicsmolecular recognitionmultidisciplinarymutantnanodevicenanomachinenanosecondnitroxylnovelnovel strategiesparallel computingparticlepatch clamppeptide chemical synthesisphosphorescencepresenilin-1programsprotein expressionprotein foldingprotein functionprotein protein interactionprotein purificationprotein structurequantumquantum chemistryreceptorreceptor functionreconstitutionresearch studyresponserhomboidscaffoldsecretasesensorsimulationsingle moleculesteroid hormonestructural biologystructural genomicssuccesstetramethylrhodaminetheoriesthree dimensional structuretooltraffickingvoltagevoltage gated channelwater channelyeast two hybrid system
项目摘要
DESCRIPTION (provided by applicant): Membrane proteins play an essential role in controlling the movement of material and information in and out of the cell, in determining the flow and use of energy, as well as in triggering the initiation of numerous signaling pathways. To fulfill these roles, conformational and interaction dynamics exert a dominant influence on their functional behavior, for it is the interplay between structure and dynamics what ultimately defines their function. The Midwest Center for Membrane Protein Structural Dynamics (MMPSD) is proposed as a highly interactive, tightly integrated and multidisciplinary effort focused on elucidating the relationship between structure, free energy landscapes, dynamics and function.
The MMPSD will be organized around multidisciplinary project teams with investigators from institutions clustered geographically inn [sic] the Midwest to maximize true interactive collaborations and an efficient exchange of ideas. These teams will study major mechanistic questions associated with membrane protein function as it relates to three major areas: energy transduction in signaling (ion channels and receptors) energy interconversion (transporters and pumps) and chemo-transduction pathways (membrane-embedded proteases and phosphatases). Our ultimate goals is to decode the general mechanistic principles that govern protein movement and its associated fluctuation dynamics by dissecting and analyzing the molecular and dynamical bases of these functions at an unprecedented and quantitative level, as well as exploiting this information to engineer altered and novel activities into membrane protein frameworks to rationally evolve new functions. To accomplish its goals, the MMPSD will develop in parallel a set of tools, concepts and reagents to: 1) Determine time-averaged structures of "Archetype" membrane proteins using Chaperone-assisted crystallization methods; 2) Apply state of the art spectroscopic methods (Magnetic Resonance, Fluorescence) to follow conformational changes and dynamics of the determined structures; and 3) Design and implement novel computational approaches to link static and dynamic data with function. Four core facilities will feed and interconnect with the individual projects in a highly interactive way. The cores will support the research in the Center by providing service and expertise in four critical areas: Membrane protein expression, the establishment of chemical synthesis capabilities for probes and detergents, the generation of a large variety of crystallization chaperones and other target binders, and generation of a pipeline of novel membrane targets through metagenomics approaches.
All of the information, tools and new reagents/targets will be shared with the research community at large through the "membrane protein dynamics gateway", a state of the art web page and a series of scientific meetings open to the public.
描述(由申请人提供):膜蛋白在控制物质和信息进出细胞、确定能量的流动和使用以及触发许多信号传导途径的启动方面发挥重要作用。为了实现这些功能,构象和相互作用动力学对它们的功能行为产生了主导影响,因为结构和动力学之间的相互作用最终决定了它们的功能。中西部中心膜蛋白结构动力学(MMPSD)提出作为一个高度互动,紧密结合和多学科的努力,重点是阐明结构,自由能景观,动力学和功能之间的关系。
MMPSD将围绕多学科项目团队组织,来自中西部地理上聚集的机构的调查人员将最大限度地实现真正的互动合作和有效的思想交流。这些团队将研究与膜蛋白功能相关的主要机制问题,因为它涉及三个主要领域:信号传导中的能量转导(离子通道和受体)能量相互转换(转运蛋白和泵)和化学转导途径(膜嵌入的蛋白酶和磷酸酶)。我们的最终目标是解码的一般机械原理,管理蛋白质运动及其相关的波动动力学解剖和分析这些功能的分子和动力学基础在一个前所未有的和定量的水平,以及利用这些信息工程改变和新的活动到膜蛋白框架,合理地发展新的功能。为了实现其目标,MMPSD将同时开发一套工具、概念和试剂,以:1)使用伴侣辅助结晶方法确定“原型”膜蛋白的时间平均结构; 2)应用最先进的光谱方法(磁共振、荧光)跟踪确定结构的构象变化和动力学; 3)设计并实现了新的计算方法,将静态和动态数据与函数联系起来。四个核心设施将以高度互动的方式与各个项目相互连接。核心将通过在四个关键领域提供服务和专业知识来支持中心的研究:膜蛋白表达,建立探针和洗涤剂的化学合成能力,产生各种各样的结晶分子伴侣和其他目标结合剂,以及通过宏基因组学方法产生新的膜靶点。
所有的信息,工具和新的试剂/目标将通过“膜蛋白动力学网关”,一个最先进的网页和一系列向公众开放的科学会议与广大研究界分享。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduardo A Perozo其他文献
Eduardo A Perozo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduardo A Perozo', 18)}}的其他基金
Structural Basis of Coupling and Dynamics in K+ Channels
K 通道耦合和动力学的结构基础
- 批准号:
10682241 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Structural basis of Outer Hair Cell Electromotility at High Resolution
高分辨率外毛细胞电动性的结构基础
- 批准号:
10317974 - 财政年份:2021
- 资助金额:
$ 7.68万 - 项目类别:
Structural basis of Outer Hair Cell Electromotility at High Resolution
高分辨率外毛细胞电动性的结构基础
- 批准号:
10625831 - 财政年份:2021
- 资助金额:
$ 7.68万 - 项目类别:
Structural basis of Outer Hair Cell Electromotility at High Resolution
高分辨率外毛细胞电动性的结构基础
- 批准号:
10416073 - 财政年份:2021
- 资助金额:
$ 7.68万 - 项目类别:
Structural Basis of “Force from Lipids” Activation in Mechanosensitive Channels
机械敏感通道中“脂质力”激活的结构基础
- 批准号:
10454805 - 财政年份:2019
- 资助金额:
$ 7.68万 - 项目类别:
Structural Basis of “Force from Lipids” Activation in Mechanosensitive Channels
机械敏感通道中“脂质力”激活的结构基础
- 批准号:
9766038 - 财政年份:2019
- 资助金额:
$ 7.68万 - 项目类别:
Structural Basis of “Force from Lipids” Activation in Mechanosensitive Channels
机械敏感通道中“脂质力”激活的结构基础
- 批准号:
10216309 - 财政年份:2019
- 资助金额:
$ 7.68万 - 项目类别:
STRUCTURAL BASIS FOR K+ CHANNEL SLOW INACTIVATION
K 通道缓慢失活的结构基础
- 批准号:
8169261 - 财政年份:2010
- 资助金额:
$ 7.68万 - 项目类别:
相似海外基金
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
- 批准号:
24K10485 - 财政年份:2024
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural studies into human muscle nicotinic acetylcholine receptors
人体肌肉烟碱乙酰胆碱受体的结构研究
- 批准号:
MR/Y012623/1 - 财政年份:2024
- 资助金额:
$ 7.68万 - 项目类别:
Research Grant
CRCNS: Acetylcholine and state-dependent neural network reorganization
CRCNS:乙酰胆碱和状态依赖的神经网络重组
- 批准号:
10830050 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Study on biological significance of acetylcholine and the content in food resources
乙酰胆碱的生物学意义及其在食物资源中的含量研究
- 批准号:
23K05090 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
alpha7 nicotinic acetylcholine receptor allosteric modulation and native structure
α7烟碱乙酰胆碱受体变构调节和天然结构
- 批准号:
10678472 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Diurnal Variation in Acetylcholine Modulation of Dopamine Dynamics Following Chronic Cocaine Intake
慢性可卡因摄入后乙酰胆碱对多巴胺动力学调节的昼夜变化
- 批准号:
10679573 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Differential Nicotinic Acetylcholine Receptor Modulation of Striatal Dopamine Release as a Mechanism Underlying Individual Differences in Drug Acquisition Rates
纹状体多巴胺释放的烟碱乙酰胆碱受体差异调节是药物获取率个体差异的机制
- 批准号:
10553611 - 财政年份:2022
- 资助金额:
$ 7.68万 - 项目类别:
Striatal Regulation of Cortical Acetylcholine Release
纹状体对皮质乙酰胆碱释放的调节
- 批准号:
10549320 - 财政年份:2022
- 资助金额:
$ 7.68万 - 项目类别:
Structural basis of nicotinic acetylcholine receptor gating and toxin inhibition
烟碱乙酰胆碱受体门控和毒素抑制的结构基础
- 批准号:
10848770 - 财政年份:2022
- 资助金额:
$ 7.68万 - 项目类别:
Mechanisms of nicotinic acetylcholine receptor modulation of cocaine reward
烟碱乙酰胆碱受体调节可卡因奖赏的机制
- 批准号:
10672207 - 财政年份:2022
- 资助金额:
$ 7.68万 - 项目类别:














{{item.name}}会员




