Quantitative Optical Phase, Amplitude, and Polarization Microscopy
定量光学相位、振幅和偏振显微镜
基本信息
- 批准号:7345096
- 负责人:
- 金额:$ 18.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-10 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:Adherent CultureAlgorithmsBiologicalBiologyBirefringenceBudgetsCaenorhabditis elegansCalibrationCellsCheek structureChemicalsClinical ResearchComplexComputersCoupledCouplingCultured CellsCustomCytometryDataDevelopmentDevicesEngineeringEnsureEpithelialEvaluationFeedbackFluorescenceFluorescence MicroscopyGenetic DatabasesGenetic ScreeningGoalsGolgi ApparatusHistologyHumanImageInvestigationLabelLarvaLasersLeadLifeLightLightingMeasurementMeasuresMechanicsMedicineMethodsMicroscopeMicroscopyModalityMolecularMorphologyMusNomarski Interference Contrast MicroscopyOptical MethodsOpticsOralOrganellesPerformancePhasePhenotypePolarization MicroscopyPredispositionProceduresProcessResearchResolutionSamplingSourceSpecificitySpecimenStagingStaining methodStainsStandards of Weights and MeasuresSystemTechniquesTestingTissue SampleTissuesWorkbasecell motilitychemical propertydesigndesiredigitalexperiencefluorescence imagingfunctional genomicsimprovedindexinginsightinstrumentnanoscalenovelnovel strategiesoptical sensorreconstructionresearch studyresiliencesensortomography
项目摘要
DESCRIPTION (provided by applicant): Proposed research will develop a new quantitative optical microscopy technique providing high resolution, high accuracy, phase, amplitude and polarization images of transparent, unstained, biological specimens. In conjunction with existing methods of quantitative fluorescence microscopy and enabled by its direct and complete access to a target's physical and chemical/molecular information, it will lead to fully digital/computational, comprehensive, multi-modal optical microscopy of biological specimens and significantly advance the capabilities of current optical methods. The new microscope will be built by coupling a novel (demonstrated) optical phase, amplitude and polarization sensor to a modern commercially available microscope chassis. The sensor will be calibrated using a combination of standard techniques (e.g. integrating sphere), extensions of specific techniques used in preliminary work, and custom phase microscopy targets. Imaging performance will be tested on a carefully chosen representative set of transparent specimens. The chosen imaging targets will provide different optical microscopy challenges that are important both for the engineering development and for gaining insight into new ways of solving important biological problems: various monolayer cultured cells, thin mouse tissue samples, and C. elegans worms at different stages of development. Significant improvements to current optical phase microscopy, as enabled by the proposed method, will include: a) imaging (without staining) low contrast organelles, invisible by existing phase contrast or DIC microscopy (e.g. Golgi apparatus); b) vastly more powerful digital processing through consistent application of linear processing algorithms (the data is linear in object information) to quantitative multi-modal imaging data to provide entirely new information/views; and c) true 3D volume information of transparent, unstained, specimens by using the quantitative phase data in diffraction tomography or z-stack reconstruction algorithms. Such improvements will enable, for example, more advanced optical microscopy for high- throughput genetic screening, faster, more accurate (quantitative) automated histology of transparent, unstained, tissue samples, and complex genetic databases containing comprehensive, fully digital, quantitative multi-modal optical microscopy data on specific phenotypes.
This research will develop a new quantitative optical microscopy technique capable of providing essential new information to biologists, in a manner amenable to wide use. By providing complete access to the physical/chemical properties of biological specimens, it will enable the application of advanced computer processing techniques to obtain and store (digitally) new information relevant for both basic and clinical research.
描述(由申请人提供):拟议的研究将开发一种新的定量光学显微镜技术,提供透明,未染色的生物标本的高分辨率,高精度,相位,振幅和偏振图像。结合现有的定量荧光显微镜方法,并通过其直接和完整地获取目标的物理和化学/分子信息,它将导致生物标本的全数字/计算、全面、多模态光学显微镜,并大大提高当前光学方法的能力。新的显微镜将建立一个新的(演示)光学相位,振幅和偏振传感器,以现代商用显微镜底盘。传感器将使用标准技术(例如积分球)、初步工作中使用的特定技术的扩展和定制相显微镜目标进行校准。成像性能将在一组精心挑选的代表性透明标本上进行测试。所选择的成像目标将提供不同的光学显微镜挑战,这对于工程开发和获得解决重要生物学问题的新方法都是重要的:各种单层培养细胞,薄小鼠组织样本和不同发育阶段的秀丽隐杆线虫。通过所提出的方法,对当前光学相位显微镜的重大改进将包括:a)成像(不染色)低对比度细胞器,现有的相对比或DIC显微镜(例如高尔基体)看不见;B)通过一致地应用线性处理算法(数据在对象信息中是线性的)对定量多模态成像数据进行更强大的数字处理,以提供全新的信息/视图;c)利用衍射层析成像中的定量相位数据或z-stack重建算法获得透明、未染色标本的真实三维体积信息。这些改进将使,例如,用于高通量遗传筛选的更先进的光学显微镜,更快,更准确的(定量)自动化透明,未染色的组织样本组织学,以及包含全面,完全数字化,定量的特定表型的多模态光学显微镜数据的复杂遗传数据库成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Remy Tumbar其他文献
Remy Tumbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Remy Tumbar', 18)}}的其他基金
Quantitative Optical Phase, Amplitude, and Polarization Microscopy
定量光学相位、振幅和偏振显微镜
- 批准号:
7756685 - 财政年份:2008
- 资助金额:
$ 18.34万 - 项目类别:
相似海外基金
CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
- 批准号:
2339373 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2021
- 资助金额:
$ 18.34万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2019
- 资助金额:
$ 18.34万 - 项目类别:
Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
- 批准号:
2278799 - 财政年份:2019
- 资助金额:
$ 18.34万 - 项目类别:
Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
- 批准号:
2019967 - 财政年份:2019
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2018
- 资助金额:
$ 18.34万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2017
- 资助金额:
$ 18.34万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2016
- 资助金额:
$ 18.34万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




