Mathematical modelling of the active hearing process in the mamalian inner ear

哺乳动物内耳主动听觉过程的数学模型

基本信息

  • 批准号:
    BB/F009356/1
  • 负责人:
  • 金额:
    $ 41.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

The human inner ear (or cochlea) is a remarkable device that out-performs any human-made system. For example, it is sensitive to displacements at sub-atomic length scales, smaller than background noise, can distinguish signals separated by microseconds, can process sounds over a million-fold intensity range (from 0dB to 120dB SPL), operates over a frequency range of over ten octaves (from 20Hz to 20kHz), can discriminate frequencies only 0.2% apart, and intensity changes of 1dB. Largely speaking, all mamals use a similar system to hear, and their ears have similarly remarkable performance. While physiologists can describe many of the processes that underlie this performance, there is a lack of agreement among them about what are the key ingredients that make it all work. Using data from rats rather than humans, we will seek to understand this process. The detailed structure of the cochlea is complicated and involves a fluid filled tube that is wrapped up into a spiral. The tube is divided in two by the so-called 'basilar membrane' that vibrates up and down like a drum. This is a very strange drum though. Sitting on top of the membrane is a device known as the organ of Corti that acts like a very special microphone. Not only does the microphone pick up the signal from the drum and relay it via nerve cells to the brain, but it also acts like an amplifier that actually makes the drum beat up and down more vigorously. However, each of the array of amplifiers at different distances along the spiral tube responds to a different frequency. This grant aims to understand how the cochlear amplifier works. It is widely believed that the key parts of the organ of Corti responsible for the amplification are the so-called outer hair cells. These have small hairs on them which can open and close tiny gates that allow calcium to flow into the cell. It is thought that the flow of calcium is the trigger that causes the cell to rapidly pull and push on the basilar membrane drum to make it beat with larger amplitude. We will use a mixture of experimental measurements (at Bristol and Keele) together with mathematical modelling and simulation. In the Bristol experiments, we will determine how the opening and closing of the gates on the outer hair cells can change the flow of calcium, how they lead to the pulling and pushing of the hair cell itself, and also how the hairs on neighbouring outer hair cells influence each other. The Keele experiments will look at detailed images of the motion of the basilar membrane as one changes the input amplitude of single-frequency sounds. This way we can look at a specific microphone/amplifier and see the dynamic response of its active process. These two sets of experiments will be used to inform a set of mathematical equations that capture the physics of the situation and enable accurate computer similation and ultimately an answer to the question of how hearing works. Firstly we shall write down equations governing the relation between the concentration of calcium, the opening of the gates on the hairs, and the pulling and pushing of the hair cell. Second we shall explore a so-called feedforward mechanism where the output of one hair cell causes amplification slightly further along the spiralling drumhead. Finally we shall look at the dynamics of how the hairs themselves couple together to cause a large response in the hair-cell microphone. Ultimately we shall use the mathematical models to decide which of a number of competing explanations is the most plausible for explaining how the active process occurs. We expect that this will make it easier for doctors to diagnose hearing probelms more accurately, and will alIow them to propose better remedies when a person's hearing does fail.
人类的内耳(或耳蜗)是一种非凡的设备,它的性能超过了任何人工系统。例如,它对亚原子长度尺度上的位移敏感,比背景噪声小,可以分辨以微秒为间隔的信号,可以处理超过一百万倍强度范围(从0分贝到120分贝SPL)的声音,工作在超过十个八度的频率范围(从20赫兹到20千赫),可以区分频率仅相差0.2%,强度变化为1分贝。大体上说,所有的哺乳动物都使用类似的系统来听,它们的耳朵也有同样出色的表现。虽然生理学家可以描述这种表现背后的许多过程,但他们之间对于使这一切发挥作用的关键因素缺乏共识。使用来自老鼠而不是人类的数据,我们将试图理解这一过程。耳蜗的详细结构很复杂,包括一个被包裹成螺旋形的充满液体的管子。管子被所谓的“基底膜”一分为二,它像鼓一样上下振动。不过,这是一种非常奇怪的鼓。在薄膜的顶部是一个被称为科尔蒂器官的装置,它的作用就像一个非常特殊的麦克风。麦克风不仅从鼓上拾取信号,并通过神经细胞将信号传递到大脑,而且它还起到了放大器的作用,实际上使鼓的上下敲击更加有力。然而,沿螺旋管的不同距离处的每个放大器阵列响应不同的频率。这项资助旨在了解耳蜗放大器是如何工作的。人们普遍认为,负责放大的Corti器官的关键部分是所谓的外毛细胞。这些细胞上有细小的毛发,可以打开和关闭允许钙流入细胞的微小大门。据认为,钙离子的流动是导致细胞快速拉动和推动基底膜鼓,使其以更大幅度跳动的触发因素。我们将使用混合的实验测量(在布里斯托尔和基尔)以及数学建模和模拟。在布里斯托尔的实验中,我们将确定外部毛细胞的门的打开和关闭如何改变钙的流动,它们如何导致毛细胞本身的拉动和推动,以及邻近外部毛细胞上的毛发如何相互影响。Keele的实验将观察当一个人改变单频声音的输入幅度时,基底膜运动的详细图像。这样,我们就可以观察特定的麦克风/放大器,并看到其活动过程的动态响应。这两组实验将被用来提供一组数学方程,这些方程捕捉到了情况的物理过程,并使计算机能够进行准确的模拟,最终回答了听力是如何工作的这个问题。首先,我们将写下控制钙浓度、毛发上的门的打开和毛细胞的拉动和推动之间的关系的方程式。其次,我们将探索一种所谓的前馈机制,即一个毛细胞的输出导致沿螺旋式鼓头稍微进一步放大。最后,我们将看看毛发本身如何结合在一起,从而在毛细胞麦克风中引起巨大响应的动力学。最终,我们将使用数学模型来确定在众多相互竞争的解释中,哪一种解释对于解释活动过程如何发生是最可信的。我们预计这将使医生更容易更准确地诊断听力问题,并允许他们在一个人的听力确实失败时提出更好的补救措施。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear models of development, amplification and compression in the mammalian cochlea.
哺乳动物耳蜗发育、放大和压缩的非线性模型。
Modelling the Active Hearing Process in Mosquitoes
模拟蚊子的主动听力过程
  • DOI:
    10.1063/1.3658129
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avitabile D
  • 通讯作者:
    Avitabile D
THE MECHANICS OF HEARING: A COMPARATIVE CASE STUDY IN BIO-MATHEMATICAL MODELLING
听力机制:生物数学建模的比较案例研究
  • DOI:
    10.1017/s1446181111000733
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    CHAMPNEYS A
  • 通讯作者:
    CHAMPNEYS A
On time-delayed and feed-forward transmission line models of the cochlea
耳蜗的时滞和前馈传输线模型
Comparison of nonlinear mammalian cochlear-partition models.
非线性哺乳动物耳蜗分区模型的比较。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Homer其他文献

Frequency-domain trade-offs for dielectric elastomer generators
介电弹性体发电机的频域权衡
Mathematical modeling reveals differential effects of erythropoietin on proliferation and lineage commitment of human hematopoietic progenitors in early erythroid culture
数学模型揭示了促红细胞生成素对早期红细胞培养中人类造血祖细胞的增殖和谱系定型的不同影响
  • DOI:
    10.3324/haematol.2015.133637
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    10.1
  • 作者:
    Daniel Ward;Deborah Carter;Martin Homer;L. Marucci;A. Gampel
  • 通讯作者:
    A. Gampel
Modeling nonlinear oscillator networks using physics-informed hybrid reservoir computing
使用物理信息混合储层计算对非线性振子网络进行建模
  • DOI:
    10.1038/s41598-025-03957-x
  • 发表时间:
    2025-07-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Andrew Shannon;Conor Houghton;David A. W. Barton;Martin Homer
  • 通讯作者:
    Martin Homer

Martin Homer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Distributed Acoustic Sensor System for Modelling Active Travel
用于建模主动行程的分布式声学传感器系统
  • 批准号:
    EP/X01262X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Research Grant
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPIN-2020-04850
  • 财政年份:
    2022
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    DGDND-2020-04850
  • 财政年份:
    2022
  • 资助金额:
    $ 41.81万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPAS-2020-00121
  • 财政年份:
    2022
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
In-Silico Modelling and 3D-printing of Dental Implants with Photo-active and Infection-Resistant Coatings (PERIo-Dent-ItiS)
具有光活性和抗感染涂层的牙种植体的计算机建模和 3D 打印 (PERIo-Dent-ItiS)
  • 批准号:
    MR/W004062/1
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Research Grant
Machine-Learning Aided Discovery of targeted ER-AF2 PROTACs
机器学习辅助发现目标 ER-AF2 PROTAC
  • 批准号:
    467045
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Studentship Programs
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    DGDND-2020-04850
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPIN-2020-04850
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPAS-2020-00121
  • 财政年份:
    2021
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPIN-2020-04850
  • 财政年份:
    2020
  • 资助金额:
    $ 41.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了