Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
基本信息
- 批准号:7479091
- 负责人:
- 金额:$ 21.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAmberAreaBiologicalBiological ProcessCapsidCerealsChargeClassCommunitiesComplexComputersConditionDNADevelopmentElectrostaticsElementsEnsureEnvironmentEquationFacility Construction Funding CategoryFoundationsGenerationsGoalsIndividualIonic StrengthsIonsMapsMembraneMethodologyMethodsModelingMolecularMolecular StructureMorphologic artifactsNucleosomesNumbersPhysicsPliabilityProcessPropertyProteinsQuantum MechanicsReactionResearch PersonnelRibosomesSchemeScienceShapesSimulateSolutionsSolventsSpecific qualifier valueSpeedStandards of Weights and MeasuresTestingTheoretical modelTimeViralWaterbasecomputerized toolsdrug discoveryimprovedinsightlarge scale simulationmodels and simulationmolecular dynamicsmolecular mechanicsmolecular modelingmolecular shapeneglectnovelprogramssimulationsuccesstool
项目摘要
DESCRIPTION (provided by applicant): The broad goals of this project are the development of novel theoretical models and practical computational tools that will improve and facilitate the process of modeling and simulating bio-molecules. The new models will be based on "implicit solvent" approach in which individual water molecules and mobile solvent ions are replaced by a continuous medium with the average properties of the solvent. Currently, the "engine" of the methodology - responsible for the estimation of the key electrostatic interactions - is either the generalized Born (GB) or the Poisson Boltzmann model (PB). The GB model is computationally efficient, but lacks the critical accuracy of the fundamental, but computationally expensive PB approach. Within the proposed approach, exact solutions of the PB equation for typical molecular shapes will serve as the foundation for deriving computationally efficient, analytical models. The models will go beyond the current generation of the generalized Born (GB) models, in both accuracy and efficiency. New important features will be added, such as the ability to compute electrostatic potential at every point in space: potential generated by a bio-molecule is often a key determinant of its function. For large compounds, e.g. multi-protein complexes, viral capsids, the ribosome or the nucleosome, the proposed approach may be the only practical way to generate potential maps with the power of a desktop computer. Approaches specifically targeted to speed-up simulations based on the implicit solvent models will be developed. They will be based upon coarse-graining of the charge distribution and will not have the significant artifacts typical of the "standard" schemes in which interactions beyond a specified distance are neglected. The methods will yield at least a 10-fold increase in computational speed for large bio-molecular structures. The use of the new models will be expanded to applications where the GB model is currently not applied, but where computational speed and accuracy are critical, for example in quantum mechanics-molecular mechanics (QM-MM) calculations on bio-molecules. The fast, analytical models of solvation will become more dependable. The models will be used to gain insights into the molecular mechanism of enhanced flexibility of short DNA fragments. RELEVANCE: Molecular modeling and simulations are nowadays indispensable tools in biomedical science and the drug discovery process. The proposed methods will significantly enhance their accuracy and speed.
描述(由申请人提供):该项目的主要目标是开发新的理论模型和实用的计算工具,以改善和促进建模和模拟生物分子的过程。新模型将基于“隐式溶剂”方法,其中单个水分子和移动的溶剂离子被具有溶剂平均性质的连续介质取代。目前,“引擎”的方法-负责估计的关键静电相互作用-是广义玻恩(GB)或泊松玻尔兹曼模型(PB)。GB模型计算效率高,但缺乏基本的关键精度,但计算昂贵的PB方法。在所提出的方法中,PB方程的典型分子形状的精确解将作为计算效率高,分析模型推导的基础。该模型在精度和效率上都将超过当前一代的广义玻恩(GB)模型。将增加新的重要功能,例如计算空间中每个点的静电势的能力:生物分子产生的电势通常是其功能的关键决定因素。对于大的化合物,例如多蛋白质复合物,病毒衣壳,核糖体或核小体,所提出的方法可能是唯一实用的方法来生成潜在的地图与台式计算机的功率。将开发基于隐式溶剂模型的专门针对加速模拟的方法。它们将基于电荷分布的粗粒化,并且不会具有“标准”方案中典型的显著伪影,其中忽略了超过指定距离的相互作用。这些方法将使大型生物分子结构的计算速度提高至少10倍。新模型的使用将扩展到GB模型目前不适用的应用,但计算速度和准确性至关重要,例如在生物分子的量子力学-分子力学(QM-MM)计算中。溶剂化的快速分析模型将变得更加可靠。这些模型将用于深入了解短DNA片段增强灵活性的分子机制。相关性:分子建模和模拟是当今生物医学科学和药物发现过程中不可或缺的工具。所提出的方法将显着提高其准确性和速度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXEY VLAD ONUFRIEV其他文献
ALEXEY VLAD ONUFRIEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXEY VLAD ONUFRIEV', 18)}}的其他基金
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
- 批准号:
10344019 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
- 批准号:
10544161 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Explicit ions in implicit solvent: fast and accurate.
隐式溶剂中的显式离子:快速、准确。
- 批准号:
9808072 - 财政年份:2019
- 资助金额:
$ 21.43万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8182362 - 财政年份:2006
- 资助金额:
$ 21.43万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8322555 - 财政年份:2006
- 资助金额:
$ 21.43万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
- 批准号:
7906774 - 财政年份:2006
- 资助金额:
$ 21.43万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8520321 - 财政年份:2006
- 资助金额:
$ 21.43万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
- 批准号:
8719123 - 财政年份:2006
- 资助金额:
$ 21.43万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
- 批准号:
7269462 - 财政年份:2006
- 资助金额:
$ 21.43万 - 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
- 批准号:
7670426 - 财政年份:2006
- 资助金额:
$ 21.43万 - 项目类别:
相似海外基金
InnovAtive DeMonstrator for hyBrid-Electric Regional Application (AMBER)
混合电动区域应用创新演示器 (AMBER)
- 批准号:
10064408 - 财政年份:2023
- 资助金额:
$ 21.43万 - 项目类别:
EU-Funded
Alberta Moving Beyond Breast Cancer (AMBER) Cohort Study: Understanding how Physical Activity, Sedentary Behaviour, and Health-related Fitness are Related to Breast Cancer Survival
艾伯塔省超越乳腺癌 (AMBER) 队列研究:了解体力活动、久坐行为和健康相关健身与乳腺癌生存有何关系
- 批准号:
478288 - 财政年份:2023
- 资助金额:
$ 21.43万 - 项目类别:
Operating Grants
InnovAtive DeMonstrator for hyBrid-Electric Regional Application (AMBER)
混合电动区域应用创新演示器 (AMBER)
- 批准号:
10064142 - 财政年份:2023
- 资助金额:
$ 21.43万 - 项目类别:
EU-Funded
Alberta Moving Beyond Breast Cancer (AMBER) Cohort Study: Understanding how Physical Activity, Sedentary Behaviour, and Health-related Fitness are Related to Breast Cancer Survival
艾伯塔省超越乳腺癌 (AMBER) 队列研究:了解体力活动、久坐行为和健康相关健身与乳腺癌生存有何关系
- 批准号:
472392 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Operating Grants
Collaborative Research: Frameworks: Interoperable High-Performance Classical, Machine Learning and Quantum Free Energy Methods in AMBER
合作研究:框架:AMBER 中可互操作的高性能经典、机器学习和量子自由能方法
- 批准号:
2209718 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Standard Grant
Applying Novel Techniques to Study Saskatchewan Amber and Dinosaur Fossils
应用新技术研究萨斯喀彻温省琥珀和恐龙化石
- 批准号:
576089-2022 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
New Generation of General AMBER Force Field for Biomedical Research
用于生物医学研究的新一代通用琥珀力场
- 批准号:
10798829 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
CAREER: Fossil Amber Insight Into Macroevolutionary Dynamics in an Ecologically Diverse Island System
职业:化石琥珀洞察生态多样化岛屿系统中的宏观进化动力学
- 批准号:
2144915 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: Interoperable High-Performance Classical, Machine Learning and Quantum Free Energy Methods in AMBER
合作研究:框架:AMBER 中可互操作的高性能经典、机器学习和量子自由能方法
- 批准号:
2209717 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Standard Grant
Late Cretaceous Amber Deposits from Saskatchewan, Canada
加拿大萨斯喀彻温省的白垩纪晚期琥珀矿床
- 批准号:
RGPIN-2021-04174 - 财政年份:2022
- 资助金额:
$ 21.43万 - 项目类别:
Discovery Grants Program - Individual