Analytical Electrostatics: Methods and Biological Applications

分析静电学:方法和生物学应用

基本信息

项目摘要

DESCRIPTION (provided by applicant): Progress in modern bio-molecular sciences, from structural biology to structure-based drug design, is greatly accelerated by methods of atomic-level modeling and simulations that bridge the gap between theory and experiment. One of the widely used methods of this kind, the so-called implicit solvation, provides significant computational advantages and versatility by representing the effects of solvent - often the most computationally expensive part of such simulations - in an approximate manner, via a continuum. Currently, the practical "engine'' of this implicit solvation methodology is either the generalized Born (GB) model or the more fundamental formalism of the Poisson (or Poisson-Boltzmann) equation. It is the relatively much simpler and more efficient GB model that has almost exclusively been used in molecular dynamics (MD) simulations where it has shown impressive success in a variety of areas, from protein folding to molecular docking. However, the much greater computational efficiency and versatility of such approximate models are currently accompanied with a reduced accuracy relative to the more traditional, but computationally very demanding explicit solvent approach. These accuracy limitations must be addressed in order to fully utilize the numerous benefits offered by the implicit solvation models in molecular simulations. In addition, the speed limitations of these models have also become apparent lately, and need to be overcome. During the period of previous funding, we have developed new models of implicit aqueous solvation that are more accurate and efficient than the popular GB models currently in use by the bio-molecular modeling community. The new models directly address the well-known deficiencies of the canonical GB models, such as secondary structure bias or erroneous salt-bridge strength, present in the very GB framework that remained unchanged over the past 20 years. A combination of novel approaches promises to speed-up MD simulations based on our implicit solvation models by up to 4 orders of magnitude. For the modeling community to benefit from these developments, the methods must be carefully implemented, tested, and further refined specifically in the context of Molecular Dynamics simulations where they are expected to make the highest impact. This renewal thus aims to incorporate the new models into freely available as well as popular Molecular Dynamics simulation packages. Our goals in this regard will be, first to improve the accuracy of MD simulations applied to bio-molecular systems, and second, to improve their speed. A third, forward looking goal will be to develop a conceptually new analytical framework of aqueous solvation that goes beyond the current foundation of practical analytical electrostatic models -- the Poisson formalism of continuum, linear, local response electrostatics. The proposed fully implicit, analytical models will retain most of the solvation effects of the first hydration shell. PUBLIC HEALTH RELEVANCE: Molecular modeling and simulations are indispensable tools in biomedical science and the drug discovery process. The proposed research will significantly enhance the capabilities of these tools and the likelihood of important discoveries by making them faster, more accurate, and more widely available.
描述(由申请人提供):现代生物分子科学的进步,从结构生物学到基于结构的药物设计,通过原子水平的建模和模拟方法极大地加速了理论和实验之间的差距。这类被广泛使用的方法之一,即所谓的隐式溶剂化,通过一个连续体以近似的方式表示溶剂的影响(通常是此类模拟中计算成本最高的部分),提供了显著的计算优势和通用性。目前,这种隐式溶剂化方法的实际“引擎”要么是广义玻恩(GB)模型,要么是更基本的泊松(或泊松-玻尔兹曼)方程的形式。它是相对简单和高效得多的GB模型,几乎完全用于分子动力学(MD)模拟,在从蛋白质折叠到分子对接的各个领域都显示出令人印象深刻的成功。然而,这种近似模型的更高的计算效率和通用性目前伴随着相对于传统的精度降低,但计算非常苛刻的显式溶剂方法。为了充分利用隐式溶剂化模型在分子模拟中提供的众多好处,必须解决这些精度限制。此外,这些模型的速度限制最近也变得明显,需要克服。在之前的资助期间,我们开发了隐式水溶液溶剂化的新模型,比生物分子建模界目前使用的流行的GB模型更准确和高效。新模型直接解决了标准GB模型中众所周知的缺陷,例如在过去20年中保持不变的GB框架中存在的二次结构偏差或错误的盐桥强度。新方法的组合有望将基于隐式溶剂化模型的MD模拟速度提高4个数量级。为了让建模社区从这些发展中受益,这些方法必须仔细实施、测试,并在分子动力学模拟的背景下进一步完善,因为它们有望产生最大的影响。因此,这次更新的目的是将新模型纳入免费提供的以及流行的分子动力学模拟包。我们在这方面的目标是,首先提高应用于生物分子系统的MD模拟的准确性,其次提高其速度。第三,前瞻性目标将是开发一个概念性的水溶液分析框架,超越当前实用分析静电模型的基础——连续体、线性、局部响应静电的泊松形式。所提出的完全隐式分析模型将保留第一水化壳的大部分溶剂化效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALEXEY VLAD ONUFRIEV其他文献

ALEXEY VLAD ONUFRIEV的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALEXEY VLAD ONUFRIEV', 18)}}的其他基金

Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
  • 批准号:
    10344019
  • 财政年份:
    2022
  • 资助金额:
    $ 28.27万
  • 项目类别:
Next generation implicit solvation for atomistic modeling
用于原子建模的下一代隐式溶剂化
  • 批准号:
    10544161
  • 财政年份:
    2022
  • 资助金额:
    $ 28.27万
  • 项目类别:
Explicit ions in implicit solvent: fast and accurate.
隐式溶剂中的显式离子:快速、准确。
  • 批准号:
    9808072
  • 财政年份:
    2019
  • 资助金额:
    $ 28.27万
  • 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
  • 批准号:
    7479091
  • 财政年份:
    2006
  • 资助金额:
    $ 28.27万
  • 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
  • 批准号:
    8322555
  • 财政年份:
    2006
  • 资助金额:
    $ 28.27万
  • 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
  • 批准号:
    7906774
  • 财政年份:
    2006
  • 资助金额:
    $ 28.27万
  • 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
  • 批准号:
    8520321
  • 财政年份:
    2006
  • 资助金额:
    $ 28.27万
  • 项目类别:
Analytical Electrostatics: Methods and Biological Applications
分析静电学:方法和生物学应用
  • 批准号:
    8719123
  • 财政年份:
    2006
  • 资助金额:
    $ 28.27万
  • 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
  • 批准号:
    7269462
  • 财政年份:
    2006
  • 资助金额:
    $ 28.27万
  • 项目类别:
Analytical Electrostatics: Methods and Biological Applications.
分析静电学:方法和生物学应用。
  • 批准号:
    7670426
  • 财政年份:
    2006
  • 资助金额:
    $ 28.27万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.27万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了