First-principles thermodynamics of metals under extreme conditions

极端条件下金属的第一原理热力学

基本信息

  • 批准号:
    EP/C534360/1
  • 负责人:
  • 金额:
    $ 23.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the hazards of being an astronaut is that your spacecraft could be hit by small rock particles and other space debris hurtling through the solar system at thousands of miles an hour. The collisions could be terrifying, because the metal body of the spacecraft would behave in strange ways as it is heated and compressed by the force of the collisions. Actually, there are many other situations where really violent events have extreme effects. Imagine, for example, a missile hitting a battleship, a bomb exploding in a confined space, or a large meteorite hitting the Earth. To understand these situations, scientists would like to know how metals, and other kinds of materials, behave when they are squeezed by enormous pressures millions of times greater than atmospheric pressure, and when they are heated to temperatures of thousands of degrees.The idea in our project is to use computer calculations to work out how metals behave at very high pressures and temperatures. To understand how we are planning to do this, you have to remember that everything is made of atoms, and what makes one material different from another is that it is made of different atoms arranged in different ways. To work out how metals behave when they are strongly compressed and heated, we are going to do calculations on collections of atoms to see what happens when the atoms are squeezed together and when they are given a lot of heat energy. We will do this using the theory of quantum mechanics, which tells us exactly how to calculate the behaviour of atoms. We know that calculations like this really work, because we have tried them already on some metals like aluminium and copper, and we have found that the calculations tell us very accurately how hot the metals have to be in order to melt.You might wonder why we want to do calculations. Why not just do laboratory experiments? Scientists have been doing just that for many years. One way, called static compression , is to squeeze the material very hard using a large vice. Another way, called shock experiments , is to fire high-speed bullets at the materials -just like rock particles hitting spacecraft! Both kinds of experiments can reach pressures of millions of times atmospheric pressure and temperatures of thousands of degrees. But the problem is that the experiments are difficult, and sometimes shock experiments and static compression experiments do not agree with each other very well. So we need calculations to help understand the experiments and to explain why they don't agree.There is also another good reason why calculations are so important. Experiments are very good at telling you what happens, but they may not tell you why it happens. To understand why a material behaves one way rather than another, you have to do calculations. And it's only calculations on the atoms that can give you a really good understanding.In our project, we want to look at a family of metals called the transition metals , which include some well-known metals like iron, nickel and tungsten, as well as some less well-known ones like hafnium and molybdenum. This is a good plan, because the family relationships will help us to build a convincing story about how their behaviour at high pressures and temperatures changes from one metal to the next.When we have finished the project, many other scientists will be interested in what we have discovered. We will understand much better than before what happens to metals at high pressures and temperatures, and how this is explained by the behaviour of the atoms. Scientists doing experiments will be helped to understand why different experiments sometimes do not agree. And in the long term our work will help space scientists to design better spacecraft, and make the astronaut's life less hazardous!
作为一名宇航员的危险之一是,你的宇宙飞船可能会被以每小时数千英里的速度穿过太阳系的小岩石颗粒和其他太空碎片击中。碰撞可能是可怕的,因为航天器的金属体会以奇怪的方式表现,因为它被碰撞的力量加热和压缩。实际上,还有许多其他情况下,真正的暴力事件有极端的影响。想象一下,例如,一枚导弹击中一艘战舰,一枚炸弹在密闭空间爆炸,或者一颗大陨石击中地球。为了理解这些情况,科学家们想知道金属和其他种类的材料在受到比大气压大几百万倍的巨大压力挤压时,以及在被加热到几千度的温度时,它们的行为如何。我们项目的想法是利用计算机计算来计算金属在非常高的压力和温度下的行为。为了理解我们计划如何做到这一点,你必须记住,一切都是由原子组成的,而一种材料与另一种材料的不同之处在于它是由不同的原子以不同的方式排列而成的。为了弄清楚金属在受到强烈压缩和加热时的行为,我们将对原子集合进行计算,看看当原子被挤压在一起时,当它们被赋予大量热能时会发生什么。我们将使用量子力学理论来做这件事,它告诉我们如何准确地计算原子的行为。我们知道这样的计算确实有效,因为我们已经在铝和铜等金属上进行了尝试,我们发现计算非常准确地告诉我们金属要熔化必须有多热。你可能会想知道我们为什么要做计算。为什么不做实验室实验呢?科学家们多年来一直在这样做。一种方法,称为静态压缩,是挤压材料非常努力使用一个大老虎钳。另一种称为冲击实验的方法是向材料发射高速子弹-就像岩石颗粒撞击航天器一样!这两种实验都可以达到数百万倍大气压的压力和数千度的温度。但问题是实验比较困难,有时冲击实验和静态压缩实验不能很好地吻合。所以我们需要计算来帮助理解实验,并解释为什么它们不一致。还有另一个很好的原因,为什么计算如此重要。实验很好地告诉你发生了什么,但它们可能不会告诉你为什么会发生。要理解为什么一种材料的行为是这样而不是那样,你必须进行计算。只有对原子的计算才能给你一个很好的理解。在我们的项目中,我们想看看一个被称为过渡金属的金属家族,其中包括一些众所周知的金属,如铁,镍和钨,以及一些不太知名的金属,如铪和钼。这是一个很好的计划,因为这些家庭关系将帮助我们建立一个令人信服的故事,说明它们在高压和高温下的行为如何从一种金属到另一种金属发生变化。我们将比以前更好地理解金属在高压和高温下会发生什么,以及如何用原子的行为来解释这一点。科学家做实验将有助于理解为什么不同的实验有时不同意。从长远来看,我们的工作将帮助空间科学家设计更好的航天器,并使宇航员的生活不那么危险!

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mike Gillan其他文献

Mike Gillan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mike Gillan', 18)}}的其他基金

Support for the UK Car-Parrinello Consortium
支持英国汽车-Parrinello 联盟
  • 批准号:
    EP/F040105/1
  • 财政年份:
    2008
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Research Grant

相似国自然基金

基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

First-Principles Statistical Thermodynamics and Materials Informatics Considering Weak Interactions: Exploring Gas Separability of Deep Eutectic Solvents
考虑弱相互作用的第一性原理统计热力学和材料信息学:探索深共晶溶剂的气体分离性
  • 批准号:
    21H01894
  • 财政年份:
    2021
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
First-principles thermodynamics for optimal design of atomic structure and properties of grain boundaries in ceramic materials
陶瓷材料原子结构和晶界性能优化设计的第一原理热力学
  • 批准号:
    21K14405
  • 财政年份:
    2021
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Transport of post-transition metals in hydrothermal fluids: thermodynamics from first-principles
热液中后过渡金属的传输:第一原理的热力学
  • 批准号:
    NE/P002196/1
  • 财政年份:
    2016
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Research Grant
First-principles-based statistical thermodynamics simulation on multicomponent alloys including interfaces
基于第一原理的多元合金(包括界面)统计热力学模拟
  • 批准号:
    25820323
  • 财政年份:
    2013
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Structure and phase stability of alloys based on systematic first principles thermodynamics calculations
基于系统第一原理热力学计算的合金结构和相稳定性
  • 批准号:
    23246111
  • 财政年份:
    2011
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Thermodynamics of solid solutions based on first-principles simulations of supercells of host phases with defects of the solute component
基于具有溶质成分缺陷的主相超级晶胞第一性原理模拟的固溶体热力学
  • 批准号:
    195592186
  • 财政年份:
    2011
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Research Grants
First principles thermodynamics calculation with controlled accuracy in multicomponent systems
多组分系统中精度可控的第一原理热力学计算
  • 批准号:
    23686090
  • 财政年份:
    2011
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
FIRST PRINCIPLES DESIGN OF DEGRADABLE MG ALLOYS FOR BONE REGENERATION
用于骨再生的可降解镁合金的第一性原理设计
  • 批准号:
    7956202
  • 财政年份:
    2009
  • 资助金额:
    $ 23.52万
  • 项目类别:
First-Principles, Computer-Aided Nanosystem Design and Analysis
第一性原理,计算机辅助纳米系统设计与分析
  • 批准号:
    7448234
  • 财政年份:
    2008
  • 资助金额:
    $ 23.52万
  • 项目类别:
First principles thermodynamics in nonstoichiometric oxides
非化学计量氧化物的热力学第一原理
  • 批准号:
    20246095
  • 财政年份:
    2008
  • 资助金额:
    $ 23.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了